
COMENIUS UNIVERSITY, BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS

AND INFORMATICS

From segments to spline curves and patches

(User’s manual)

Diploma thesis

2016 Peter Bezák

COMENIUS UNIVERSITY, BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

DEPARTMENT OF ALGEBRA, GEOMETRY

AND DIDACTICS OF MATHEMATICS

From segments to spline curves and patches

(User’s manual)

Diploma thesis

Field of study: 1113 Mathematics

Study programme: Computer graphics and geometry

Department: Department of Algebra, Geometry and Didactics of Mathematics

Supervisor: RNDr. Róbert Bohdal, PhD.

Consultant: RNDr. Soňa Kudličková, CSc.

Bratislava 2016 Peter Bezák

UNIVERZITA KOMENSKÉHO

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

KATEDRA ALGEBRY, GEOMETRIE A

DIDAKTIKY MATEMATIKY

Od jednoduchých oblúkov k splajnovým krivkám a záplatám

(Používateľská príručka)

Diplomová práca

Študijný program: 1113 Matematika

Študijný odbor: Počítačová grafika a geometria

Katedra: Katedra algebry, geometrie a didaktiky matematiky

Vedúci: RNDr. Róbert Bohdal, PhD.

Konzultant: RNDr. Soňa Kudličková, CSc.

Bratislava 2016 Peter Bezák

Honour declaration

I declare that I personally prepared this presented diploma thesis and carried out myself

activities directly involved with it. I also confirm that I have used no resources other than those

declared.

Bratislava, 4.5.2016

 ...

 Student’s signature

Acknowledgment

I would like to express my gratitude to my supervisor Róbert Bohdal for useful tips and

advice during designing and developing software application Splines & Surfaces, and to my

consultant, Soňa Kudličková, for helping me with mathematical description of geometrical

objects and valuable comments on theoretical part of this work. Special thanks go to my beloved

family and friends for their support.

Abstract

The purpose of this work is to create software application, which will be used during lectures

in Representation of geometric objects. Thus main task for application called Splines & Surfaces is

to enable user to enter input data and modify arcs, splines, patches and surfaces to accomplish this. We

mathematically describe these objects, mention their properties and methods for enumeration. Then we

describe how to modify their shape by modification of knot vector, multiplicity of control points or

by choice of end condition. Work specifies requirements, goal, and controls for application and data

model, input, principle of construction, methods for modifying, output and possible errors for each

graphic object. User’s guide for Splines & Surfaces application is supplied as a part of this work.

Keywords: curves, approximation and interpolation splines, surfaces, continuity conditions, software

application, user’s guide

Abstrakt

Hlavným účelom tejto práce je vytvorenie softwarovej aplikácie, ktorá bude využívaná

na prednáškach predmetu Reprezentácia geometrických objektov. Preto je úlohou aplikácie Splines &

Surfaces umožniť používateľovi zadávať vstupné údaje a modifikovať oblúky, splajny a plochy.

Tieto geometrické objekty matematicky opíšeme a upozorníme na ich vlastnosti a metódy vyčíslenia.

Ponúkneme viaceré možnosti modifikovania ich tvaru cez násobné riadiace vrcholy, zmeny v uzlovom

vektore alebo rôzne okrajové podmnienky. V práci sú uvedené požiadavky, cieľ a ovládanie aplikácie

a špecifikácie dátového modelu, vstupu, princípu konštrukcie, možnosti modelovania, výstupu

a moźných chýb pre každý grafický objekt. Súčasťou práce je používateľská príručka k aplikácií Splines

& Surfaces.

Kľúčové slová: krivky, aproximačné a interpolačné splajny, plochy, podmienky spojitosti, softwarová

aplikácia, používateľská prírućka

Contents
Table of figures ... 10

Table of list and tables ... 11

Introduction ... 1

1. Chapter – Curve and Surface representation ... 3

1.1. Arcs ... 3

1.1.1. Bézier arc ... 3

1.1.2. Hermite arc .. 7

1.2. Splines ... 9

1.2.1. Continuity conditions for splines ... 10

1.2.2. Cubic Hermite spline ... 11

1.2.3. Cardinal spline ... 11

1.2.4. Bézier spline .. 13

1.2.5. Beta-Spline .. 15

1.2.6. B-spline ... 17

1.3. Rational curves .. 22

1.3.1. Rational Bézier curve .. 22

1.3.2. Rational Bézier spline.. 24

1.3.3. Rational B-splines curve - NURBS ... 25

1.4. Surfaces ... 26

1.4.1. Swept surfaces ... 27

1.4.1.1. Surfaces of revolution.. 27

1.4.1.2. Extruded surfaces .. 29

1.4.2. Coons patches .. 29

1.4.2.1. Ruled Coons patches ... 29

1.4.2.2. Bilinear Coons patches .. 30

1.4.2.3. Partially bicubic Coons patches ... 30

1.4.2.4. Bicubic Coons patch .. 31

1.4.3. Tensor product surfaces ... 32

1.4.3.1. Tensor product Bézier surface ... 33

1.4.3.2. Tensor product B-spline surface .. 35

1.4.4. Rational surfaces ... 37

1.4.4.1. Rational Bézier surface .. 38

1.4.4.2. Rational B-spline Surface - NURBS ... 39

2. Chapter – Specification ... 40

2.1. Goal ... 40

2.2. Design and controls ... 41

2.3. Data model .. 42

2.3.1. Arcs and splines ... 43

2.3.2. Patches ... 45

3. Chapter – Implementation .. 48

3.1. Forms ... 48

3.2. Classes ... 52

3.2.1. Curve classes ... 53

3.2.2. Surface classes ... 59

4. Chapter – User’s guide ... 64

4.1. Installation ... 64

4.2. Graphic user interface.. 64

4.3. Display options .. 67

4.4. Control box .. 68

4.5. Controls ... 70

4.6. Modelling objects .. 72

Conclusion ... 74

Literature ... 75

Attachments ... 76

Table of pictures
Figure 1-1 Bernstein polynomials and Bézier arc for degree 𝒏 = 𝟑 ... 4

Figure 1-2 Cubic Hermite polynomials and Hermite arc ... 8

Figure 1-3 Quintic Hermite polynomials and Hermite arc .. 9

Figure 1-4 Relaxed Hermite spline .. 11

Figure 1-5 Cardinal polynomials and spline with double endpoints for 𝒔 = 𝟏, 𝟔 ... 12

Figure 1-6 Approximation and interpolation cubic Bézier spline .. 13

Figure 1-7 Beta polynomials and Beta spline for 𝜷𝟏 = 𝟑 and 𝜷𝟐 = 𝟏𝟎 .. 16

Figure 1-8 B-spline of degree 𝒏 = 𝟑 ... 17

Figure 1-9 B-spline polynomials of degree 𝒏 = 𝟑 .. 18

Figure 1-10 B-spline polynomials of degree 𝒏 = 𝟑 ... 18

Figure 1-11 Rational Bernstein polynomials and Bézier arc of degree 𝒏 = 𝟑 .. 23

Figure 1-12 Rational B-spline polynomials and NURBS spline of degree 𝒏 = 𝟑 ... 25

Figure 1-13 Rational B-spline polynomials and NURBS spline of degree 𝒏 = 𝟐 ... 26

Figure 1-14 Surface of revolution.. 29

Figure 1-15 Extruded surface .. 29

Figure 1-16 Linear Coons patch ... 30

Figure 1-17 Bilinear Coons patch .. 30

Figure 1-18 Partialy bicubic Coons patch .. 31

Figure 1-19 Bicubic Coons patch ... 32

Figure 1-20 Tensor product Bézier patch .. 33

Figure 1-21 Tensor product B-spline patch ... 36

Figure 2-1 Logo .. 40

Figure 2-2 Context diagram ... 40

Figure 3-1 Class structure .. 52

Figure 4-1 Main window of Splines & Surfaces ... 64

Figure 4-2 Display options ... 67

Figure 4-3 Control box... 68

Figure 4-4 Context menu .. 70

Figure 4-5 Specify vertex ... 71

Figure 4-6 Knot vector options .. 73

file:///D:/Dokumenty/skola/diplomovka/diplomovka%20revision.docx%23_Toc458634931

Table of list and tables
Table 1 Use cases .. 76

Table 2 Keywords .. 78

List 1 Error messages... 79

List 2 Information messages ... 80

1

Introduction
 The presented work harmonises two aspects, mathematical representation of geometric

objects and manipulation with those objects by means of software application Splines & Surfaces.

 First chapter focuses on studying planar and spatial curves. It starts from simple arcs -

Bézier and Hermite, continues through continuity conditions for splines and then presents

representation of individual spline curves. This includes Hermite spline, cardinal spline,

approximation and interpolation Bézier spline, Beta spline and B-spline.

 To further improve control over shape of curve, rational curves are introduced.

They allow shape modification by changing weights of control points and also represent conic

sections.

 Important de Casteljau and de Boor enumeration algorithms for Bézier curve, B-spline

curves and surfaces are used in Splines & Surfaces to evaluate points on curve or surface.

 Representation of curves and splines naturally leads to representation of surfaces.

This includes parametric surfaces, surfaces of revolution and extruded surfaces – affine surfaces,

surfaces created from boundary curves – Coons patches and surfaces defined by control net – both

integral and rational Bézier and B-spline surfaces.

 Essential part of this work is designed and developed software application

Splines & Surfaces. This application in detail processes individual options for modification

of geometric objects, which are described in first chapter and other literature concerning CAGD.

With respect to scope of this work, not all modification options are listed in text, but they

are implemented in software.

 Next chapter states and specifies requirements, and defines how it looks and controls

for developed software application. It describes functions for controlling the application and

processing input form user and defines data model and specifications for each individual arcs,

splines and surfaces – input, how is this input processed, output and possible errors. This includes

all possible ways to modify given object.

In each case of curve’s visualisation, after defining a sequence of control points and

specifying type of curve, curve and blending functions are rendered. Blending function define

shape of curve and its geometric properties. In case of splines choice of end condition is possible

– either phantom or multiple vertices, by defining vector first derivative at end points or changes

in knot vector, which can be uniform, open or non-uniform.

 Application offers variety of options to create a surface. Either creating parametric

surface, surfaces that is created from parametrically described profile curve or boundary curves

or surfaces defined by control net. Parameters for these curves and control net can be modified.

Displayed result is model of surface – representation of biparametric geometric object.

Third chapter is about implementation of software application Splines & Surfaces.

It describes important functions for processing input from user, displaying enumerated objects.

These functions serve as interface between user and hardware. Important content of this chapter

is class structure. All classes and their methods are described in detail.

2

 Fourth chapter represents user’s guide for software application Splines & Surfaces.

It describes all options located in menu and icons beneath it and options for modifying graphic

visualisation. Significant part is dedicated to describing controls and modification of created

geometric objects. The most important features are illustrated on screenshots from application.

 The goal of software application Splines & Surfaces is visualisation of certain curves and

surfaces in CAGD, which are examined in lecture in Representation of geometric objects [1],

which belongs to bachelor degree of education on our university.

3

1. Chapter – Curve and Surface representation
 We can represent curves and surfaces in three different ways: explicitly, implicitly and

parametrically.

“Explicit representations of the form 𝑦 = 𝑓(𝑥), although useful in many applications, are

axis dependent, cannot adequately represent multiple-valued functions, and cannot be used where

a constraint involves an infinite derivative. Hence, they are little used in computer graphics

or computer aided design.“[2]

“Implicit representations of the form 𝑓(𝑥, 𝑦) = 0 and 𝑓(𝑥, 𝑦, 𝑧) = 0 for curves and

surfaces, respectively, are capable of representing multiple-valued functions but are still axis

dependent. However, they have a variety of uses in computer graphics and computer aided

design.“[2]

 The most important curve and surface representation for this work and computer graphics

at all is parametric representation. For curves it has form

𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡)

where 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) are arbitrary functions and 𝑡 is parameter from given interval. It can

represent multi-valued functions and this representation is independent of choice of coordinate

axes. Values of 𝑥, 𝑦 and 𝑧 designate coordinates of a point on the curve or surface. We will use

Cartesian coordinate system and define position vector as

𝑃(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))

 In this chapter we will first describe integral and then rational curves and surfaces.

1.1. Arcs

 The simplest curve, or arc, is a straight line segment, given by equation

𝑐(𝑡) = 𝑉0 + 𝑡(𝑉1 − 𝑉0)

where 𝑡 ∈ [0,1], 𝑐(𝑡) is a position vector and 𝑉0 and 𝑉1 are two different points in space. This

curve has degree of one.

1.1.1. Bézier arc

Bézier curve is probably the best known curve model. Bézier curve of degree 𝑛 is defined

by sequence of 𝑉0, … , 𝑉𝑛 points in space. These points are called control points and define control

polygon. We can define Bézier curve of degree 𝑛 as

𝑐(𝑡) = ∑ 𝐵𝑖
𝑛(𝑡)𝑉𝑖

𝑛

𝑖=0

where 𝑡 ∈ [0, 1], 𝑉𝑖 stands for 𝑖–th control point and 𝐵𝑖
𝑛(𝑡) is 𝑖–th Bernstein polynomial of

degree 𝑛. (Figure 1-1)

4

Figure 1-1 Bernstein polynomials and Bézier arc for degree 𝑛 = 3

Bézier curve uses Bernstein polynomials as blending functions, which are defined

for degree of 𝑛 as

𝐵𝑖
𝑛(𝑡) = {

(
𝑛
𝑖
) 𝑡𝑖 (1 − 𝑡)𝑛−𝑖 𝑖 = 0,… , 𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Bernstein polynomials have a number of properties:

 Non-negativity:

𝐵𝑖
𝑛(𝑡) ≥ 0, 𝑡 ∈ [0,1]

 Symmetry:

𝐵𝑖
𝑛(𝑡) = 𝐵𝑛−𝑖

𝑛 (1 − 𝑡), 𝑖 = 0,… , 𝑛

 Partition of unity:

∑𝐵𝑖
𝑛(𝑡) = 1,

𝑛

𝑖=0

𝑡 ∈ [0,1]

 Maximum: 𝐵𝑖
𝑛(𝑡) has exactly one maximum on interval [0, 1] at 𝑡 =

𝑖

𝑛
.

 Basis: 𝐵𝑖
𝑛(𝑡) form basis for polynomials of degree 𝑛.

 Recursion:

𝐵𝑖
𝑛(𝑡) = (1 − 𝑡) 𝐵𝑖

𝑛−1(𝑡) + 𝑡 𝐵𝑖−1
𝑛−1(𝑡), 𝑖 = 0,… , 𝑛

𝐵−1
𝑛−1(𝑡) = 𝐵𝑛

𝑛−1(𝑡) = 0

 Derivative:

𝑑

𝑑𝑡
 𝐵𝑖
𝑛(𝑡) = 𝑛 (𝐵𝑖−1

𝑛−1(𝑡) − 𝐵𝑖
𝑛−1(𝑡)) , 𝑖 = 0,… , 𝑛

 Integral:

∫ 𝐵𝑖
𝑛(𝑡)

1

0

𝑑𝑡 =
1

𝑛 + 1
, 𝑖 = 0,… , 𝑛

Proofs of these properties can be found in [5] and [9].

Properties of Bézier curves are [1]:

 Bézier curve 𝑐(𝑢) generally follows shape of the control polygon 𝑉𝑖, 𝑖 = 0,… , 𝑛.

 Endpoint interpolation property: Curve interpolates points 𝑉0 and 𝑉𝑛

𝑐(0) = 𝑉0

𝑐(1) = 𝑉𝑛

5

 Convex hull property: Every point of Bézier curve lies inside the convex hull of its

defining control points.

 Symmetry property:

∑𝐵𝑖
𝑛(𝑡)𝑉𝑖

𝑛

𝑖=0

= ∑𝐵𝑖
𝑛(1 − 𝑡)𝑉𝑛−𝑖

𝑛

𝑖=0

 Shape of curve does not change if we reverse order in control points’ sequence and

parameter 𝑡 will change its value from 1 to 0.

 Invariance under parameter transformation:

∑𝐵𝑖
𝑛(𝑡)𝑉𝑖

𝑛

𝑖=0

= ∑𝐵𝑖
𝑛 (
𝑢 − 𝑎

𝑏 − 𝑎
)𝑉𝑖

𝑛

𝑖=0

for 𝑡 ∈ [0, 1] and 𝑢 ∈ [𝑎, 𝑏].

 Invariance under affine transformation:

𝑇(𝑐(𝑡)) = 𝑇 (∑𝐵𝑖
𝑛(𝑡)𝑉𝑖)

𝑛

𝑖=0

) = ∑𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

𝑇(𝑉𝑖)

where 𝑇 is an affine transformation.

 Variation diminishing property: Intersection of control polygon and any hyperplane

creates at least same number of points of intersection as intersection of that hyperplane

and Bézier curve.

 Pseudo local control property: Bézier curves cannot be locally modified. Each change

of position even of only one control vertex changes whole curve. By moving vertex 𝑉𝑖,

the largest change in shape occurs for parametric values close to 𝑡 = 𝑖 𝑛⁄ .

 Derivatives [10]:

𝑑𝑘

𝑑𝑡𝑘
𝑐(𝑡) = 𝑛 ∙∙∙ (𝑛 − 𝑘 + 1)∑ 𝐵𝑖

𝑛−𝑘(𝑡) ∆𝑘 𝑉𝑖

𝑛−𝑘

𝑖=0

 where ∆𝑘 𝑉𝑖 is a vector defined recursively as

∆0𝑉𝑖 = 𝑉𝑖

∆1 𝑉𝑖 = 𝑉𝑖+1 − 𝑉𝑖

∆𝑘 𝑉𝑖 = ∆
1(∆𝑘−1 𝑉𝑖)

Now we can obtain tangents at endpoints

𝑑

𝑑𝑡
𝑐(0) = 𝑛(𝑉1 − 𝑉0)

𝑑

𝑑𝑡
𝑐(1) = 𝑛(𝑉𝑛 − 𝑉𝑛−1)

6

 Degree elevation [10]: Because 𝑐(𝑢) is a polynomial function of degree 𝑛, we can express

it as polynomial of degree 𝑛 + 1. Thus

∑𝐵𝑖
𝑛(𝑡)𝑉𝑖

𝑛

𝑖=0

= ∑𝐵𝑖
𝑛+1(𝑡)𝑊𝑖

𝑛+1

𝑖=0

where 𝑊𝑖 are control new points determined by equations

𝑊0 = 𝑉0

𝑊𝑖 =
𝑖

𝑛 + 1
𝑉𝑖−1 + (1 −

𝑖

𝑛 + 1
)𝑉𝑖, 𝑖 = 1,… , 𝑛

𝑊𝑛+1 = 𝑉𝑛

This operation is called degree elevation and can be useful for more precise control

of curve’s shape.

 Degree reduction [10]: Reversing of degree elevation is called degree reduction. Because

in general it is not possible to represent polynomial of degree 𝑛 by polynomial of degree

𝑛 − 1, we are only approximating shape of original curve. Exact representation

of the same curve with decreased degree is possible only in the case when degree was

elevated beforehand. Let 𝑊𝑖 , 𝑖 = 0,… , 𝑛 + 1 be control points of Bézier curve of degree

𝑛 + 1. We construct two sequences of new control points 𝐴𝑖 and 𝐵𝑖.

𝐴𝑖 =
𝑛 + 1

𝑛 + 1 − 𝑖
 𝑊𝑖 −

𝑖

𝑛 + 1 − 𝑖
 𝐴𝑖−1, 𝑖 = 0,… , 𝑛

𝐵𝑖 =
𝑛 + 1

𝑖 + 1
 𝑊𝑖+1 −

𝑛 − 𝑖

𝑖 + 1
 𝐵𝑖+1, 𝑖 = 𝑛, … , 0

𝑉𝑖 = (1 − 𝛼𝑖) 𝐴𝑖 + 𝛼𝑖 𝐵𝑖, 𝑖 = 0,… , 𝑛

Now we have to blend these two sequences together to obtain control points for Bézier

curve of degree 𝑛. There are multiple ways how to blend them, most intuitive is to choose

𝛼𝑖 =
𝑖

𝑛
. We define Bézier curves defined by control polygons 𝐴0, … , 𝐴𝑛 and 𝐵0, … , 𝐵𝑛,

as 𝐴(𝑡) and 𝐵(𝑡), respectively.

“This method obviously has serious inaccuracies, particularly in the middle range

(as could be anticipated from the above discussion which indicated that both 𝐴(𝑡) and

𝐵(𝑡) were most satisfactory near their starting points). We look to Matthias Eck

for a refinement of reverse-elevation method.” [6]

We minimise this error by constructing new control vertices by using “left” half of 𝐴𝑖 and

the “right” half of 𝐵𝑖

𝑉𝑖 = (1 − 𝛼𝑖)𝐴𝑖 + 𝛼𝑖 𝐵𝑖 , 𝑓𝑜𝑟 𝑖 = 0,… , 𝑛, 𝛼𝑖 =

{

 0 𝑖𝑓 𝑖 <

𝑛

2
1

2
𝑖𝑓 𝑖 =

𝑛

2

1 𝑖𝑓 𝑖 >
𝑛

2

7

Another approach is to define 𝛼𝑖 as in [6]

𝛼𝑖 = 2
1−2𝑛 ∙∑(

2𝑛

2𝑗
)

𝑖

𝑗=0

, 𝑖 = 0,… , 𝑛 − 1

Control points obtained by this method minimise error function

𝑑(𝑊, 𝑉) = max {|𝑊(𝑡) − 𝑉(𝑡)|, 𝑡 ∈ [0,1]}

where 𝑊(𝑡) and 𝑉(𝑡) are Bézier curves defined by control polygons 𝑊0, …𝑊𝑛+1 and

𝑉0, …𝑉𝑛, respectively.

 Enumeration of Bézier curves is mostly done by de Casteljau algorithm. It is based

on recursive definition of Bernstein polynomials

𝐵𝑖
𝑛(𝑡) = (1 − 𝑡) 𝐵𝑖

𝑛−1(𝑡) + 𝑡 𝐵𝑖−1
𝑛−1(𝑡), 𝑖 = 0,… , 𝑛

We start by defining

𝑣𝑖
0(𝑡) = 𝑉𝑖, 𝑖 = 0,… , 𝑛

 Then we compute points

𝑣𝑖
𝑘(𝑡) = (1 − 𝑡) 𝑣𝑖

𝑘−1(𝑡) + 𝑡 𝑣𝑖+1
𝑘−1(𝑡), 𝑘 = 1,… , 𝑛, 𝑖 = 0,… , 𝑛 − 𝑘

In the last step we obtain point

𝑣0
𝑛(𝑡) = 𝑐(𝑡)

which lies on curve and it is the same point that we will obtain if we enumerate 𝑐(𝑡).

Degree elevation can be also use to rasterize Bézier curve, as new vertices are

approximating original control polygon. However this approximation is very slow compared

to subdivision. This approach divides curve in two ones in such a way, that these two new curves

joined together form original curve. Both of these curves are again Bézier curves of same degree

as initial curve, so we can repeat subdivision process as many times as we need.

 It can be proved that control vertices for these new curves are points obtained from

de Casteljau algorithm. Vertices for first curve are 𝑣0
0, … , 𝑣0

𝑛 and for second curve 𝑣0
𝑛, … , 𝑣𝑛

0.

Subdivision mostly occurs at 𝑡 = 1 2⁄ and for rough idea how the curve looks like two

subdivisions are sufficient for planar curve and three for curve in space. Otherwise we terminate

subdivision process when the length of longest line segment is smaller than specified constant.

This is also a way to model more complex curves that need more control vertices.

 Modelling Bézier curves can be done only by moving control points in space, or changing

multiplicity of these points.

1.1.2. Hermite arc

Cubic Hermite arc is determined by two control points 𝑉0, 𝑉1 and two tangents at these

points 𝑞0⃗⃗⃗⃗ and 𝑞1⃗⃗⃗⃗ . Formal definition as in [1] is

8

𝑐(𝑡) = 𝐻0
3(𝑡)𝑉0 + 𝐻1

3(𝑡)𝑞0⃗⃗⃗⃗ + 𝐻2
3(𝑡)𝑞1⃗⃗⃗⃗ + 𝐻3

3(𝑡)𝑉1

where 𝑡 ∈ [0, 1]. (Figure 1-2) Blending functions 𝐻𝑖
3(𝑡), 𝑖 = 0, 1,2, 3 are called Hermite cubic

polynomials. These functions can be derived from cubic Bernstein polynomials as

𝐻0
3(𝑡) = 𝐵0

3(𝑡) + 𝐵1
3(𝑡) = 1 − 3𝑡2 + 2𝑡3

𝐻1
3(𝑡) =

1

3
𝐵1
3(𝑡) = 𝑡 − 2𝑡2 + 𝑡3

𝐻2
3(𝑡) = −

1

3
𝐵2
3(𝑡) = −𝑡2 + 𝑡3

𝐻3
3(𝑡) = 𝐵2

3(𝑡) + 𝐵3
3(𝑡) = 3𝑡2 − 2𝑡3

as in [3]. Cubic Hermite polynomials have following properties:

𝐻𝑖
3(𝑡) ≥ 0, 𝑖 = 0,1,3,𝐻2

3(𝑡) ≤ 0, 𝑡 ∈ [0, 1]

𝐻0
3(𝑡) + 𝐻3

3(𝑡) = 1

𝐻0
3(0) = 𝐻3

3(1) = 𝐻1
3´(0) = 𝐻2

3´(1) = 1

𝐻0
3(1) = 𝐻3

3(0) = 𝐻1
3´(1) = 𝐻2

3´(0) = 0

𝐻1
3(0) = 𝐻1

3(1) = 𝐻2
3(0) = 𝐻2

3(1) = 0

𝐻0
3´(0) = 𝐻3

3´(1) = 𝐻0
3´(1) = 𝐻3

3´(1) = 0

 It can be shown using these properties that cubic Hermite curve interpolates both control

points and its tangents at these points are equal to 𝑞0⃗⃗⃗⃗ and 𝑞1⃗⃗⃗⃗ .

Figure 1-2 Cubic Hermite polynomials and Hermite arc

We can also define quintic Hermite curve for two control vertices, two tangents 𝑞0⃗⃗⃗⃗ , 𝑞1⃗⃗⃗⃗

and two second derivatives r0⃗⃗ ⃗ and r1⃗⃗ ⃗ at these points as

𝑐(𝑡) = 𝐻0
5(𝑡)𝑉0 +𝐻1

5(𝑡)𝑞0⃗⃗⃗⃗ + 𝐻2
5(𝑡)r0⃗⃗ ⃗ + 𝐻3

5(𝑡)𝑟1⃗⃗⃗ + 𝐻1
5(𝑡)𝑞1⃗⃗⃗⃗ + 𝐻5

5(𝑡)𝑉1

where 𝑡 ∈ [0, 1] and 𝐻𝑖
5(𝑡), 𝑖 = 0,… , 5 are quintic Hermite polynomials. (Figure 1-3) They can

be derived from Bernstein polynomials of degree 5 by equations

𝐻0
5(𝑡) = 𝐵0

5(𝑡) + 𝐵1
5(𝑡) + 𝐵2

5(𝑡)

9

𝐻1
5(𝑡) =

1

5
(𝐵1

5(𝑡) + 2𝐵2
5(𝑡))

𝐻2
5(𝑡) =

1

20
𝐵2
5(𝑡)

𝐻3
5(𝑡) =

1

20
𝐵3
5(𝑡)

𝐻4
5(𝑡) = −

1

5
(2𝐵3

5(𝑡) + 𝐵4
5(𝑡))

𝐻5
5(𝑡) = 𝐵3

5(𝑡) + 𝐵4
5(𝑡) + 𝐵5

5(𝑡)

as in [3]. This curve interpolates both control points, first derivatives at these points are 𝑞0⃗⃗⃗⃗ and

𝑞1⃗⃗⃗⃗ and second derivatives r0⃗⃗ ⃗ and r1⃗⃗ ⃗.

Figure 1-3 Quintic Hermite polynomials and Hermite arc

For calculating point on given curve we can simply calculate value of 𝑐(𝑡) or we use

Horner’s scheme. It is based on gradual factorisation and consists of 𝑛 steps for polynomial

of degree 𝑛. Each step includes one multiplication and one summation.

Modelling Hermite arc can be done via changing position of one or both control points.

We can also change orientation and magnitude of tangents and in case of quintic arc also vectors

for second derivative.

1.2. Splines

 Working with curves of high order is not appropriate for tasks such as modelling or

interpolation, because single change in even one control point results in change of whole curve.

Instead a spline curve is used. It has various uses in mathematics, informatics, CAD,

approximation theory, design and many others. Splines are divided into two major groups,

interpolation and approximation splines. Interpolation splines are generally used for image

digitalization or describing animation paths and approximation splines for designing

and modelling.

Spline is a piecewise curve formed by number of segments. These segments itself are

curves of different types. They are joined at joining points and continuity at these points can be

changed to suit our needs. General definition of spline curve in 𝑛 dimensional space is

𝑠(𝑢) ∶ [𝑎, 𝑏] → ℝ𝑛

10

where 𝑢 ∈ [𝑎, 𝑏] and this interval is composed of subintervals [𝑢𝑖, 𝑢𝑖+1] such that 𝑎 = 𝑢0 <

 𝑢1 < ⋯ < 𝑢𝑛−1 < 𝑢𝑛 = 𝑏. We call parameter 𝑢 global parameter and local parameter 𝑡 ∈

[0,1] is defined as

𝑡 =
𝑢 − 𝑢𝑖
𝑢𝑖+1 − 𝑢𝑖

Each subinterval has its length denoted by ∆𝑖= 𝑢𝑖+1 − 𝑢𝑖. Restriction of spline 𝑠 on interval

[𝑢𝑖, 𝑢𝑖+1] is segment

𝑠𝑖 ∶ [𝑢𝑖, 𝑢𝑖+1] → ℝ𝑛

so that

𝑠(𝑢) = 𝑠𝑖(𝑡)

where 𝑢 ∈ [𝑢𝑖, 𝑢𝑖+1], 𝑡 ∈ [0,1] and maximum degree of individual segments equals degree

of spline. Points that satisfy equations 𝑠𝑖 (𝑢𝑖+1) = 𝑠𝑖+1 (𝑢𝑖+1) are called joining points. If each

subinterval has equal length, for example 𝑢𝑖 = 𝑖 𝑛⁄ , then we call spline uniform, otherwise it is

non-uniform spline.

1.2.1. Continuity conditions for splines

 We distinguish two types of continuity, parametric and geometric continuity. Firstly, we

examine parametric continuity. 𝐶0 means that position vector for points on curve changes

smoothly along whole curve. For two given two curve segments 𝑠𝑖 and 𝑠𝑖+1 on intervals [𝑢𝑖, 𝑢𝑖+1]

and [𝑢𝑖+1, 𝑢𝑖+2], respectively, we define 𝐶0continuity as 𝑠𝑖 (𝑢𝑖+1) = 𝑠𝑖+1 (𝑢𝑖+1). General

definition of 𝐶𝑛 continuity requires fulfilling 𝐶𝑛−1continuity conditions and thus

𝑠𝑖
(𝑛)
(𝑢𝑖+1) = 𝑠𝑖+1

(𝑛)
 (𝑢𝑖+1). In practice, 𝐶1and 𝐶2 continuity are mostly used. 𝐶1 continuity

ensures that tangent vector at point corresponding to 𝑢 = 𝑢𝑖+1 is the same for both segments and

thanks to 𝐶2 continuity curvature of curve changes smoothly. Example from real life for 𝐶2

continuity can be path of an object, which should move with without discontinuous changes in

position, speed and acceleration, otherwise it will look unnatural.

 Geometric continuity is less demanding. 𝐺0 stays the same as 𝐶0 but 𝐺1 is different.

It requires 𝐺0 continuity and condition 𝑠𝑖+1´ (𝑢𝑖+1) = 𝛽1 𝑠𝑖´ (𝑢𝑖+1) where 𝛽1 > 0 must be

fulfilled. So tangent vector at 𝑢 = 𝑢𝑖+1 needs to be only positive scalar multiple of tangent vector

of another segment at the same point. For 𝐺2 continuity curve must satisfy 𝐺1 continuity and

following equation 𝑠𝑖´´ (𝑢𝑖+1) = 𝛽1
2𝑠𝑖+1´´ (𝑢𝑖+1) + 𝛽2 𝑠𝑖+1´ (𝑢𝑖+1) where 𝛽2 ∈ 𝑅.

 “Although many application find 𝐺1 continuity adequate, for applications that depend

on the fairness or smoothness of a curve or surface, especially those that depend on a smooth

transition of reflected light, e.g., automobile bodies, 𝐺1 or even 𝐺2 continuity is not adequate.

For these applications, at least 𝐶2 continuity is required to achieve the desired results.” [4]

 Most splines usually leave some degree of freedom for user to modify shape of curve

by changing end conditions, which can be defined in various ways, for example:

 Clamped splines has fixed tangent vector at the end points.

𝑠0´ (𝑢0) = 𝑞0⃗⃗⃗⃗ , 𝑠𝑛−1´ (𝑢𝑛) = 𝑞𝑛⃗⃗⃗⃗

11

 Natural or relaxed spline has zero curvature at the end points.

𝑠0´´ (𝑢0) = 0⃗ , 𝑠𝑛−1´´ (𝑢𝑛) = 0⃗

 Cyclic spline has equal first and second derivatives at the end points.

𝑠0´ (𝑢0) = 𝑠𝑛−1´(𝑢𝑛), 𝑠0´´ (𝑢0) = 𝑠𝑛−1´´ (𝑢𝑛)

 Acyclic spline has equal but opposite derivatives at the end points.

𝑠0´ (𝑢0) = − 𝑠𝑛−1´ (𝑢𝑛), 𝑠0´´ (𝑢0) = − 𝑠𝑛−1´´ (𝑢𝑛)

 Quadratic condition for splines is defined as equality of second derivative at first two and

last two points.

𝑠0´´ (𝑢0) = 𝑠1´´ (𝑢1), 𝑠𝑛−2´´ (𝑢𝑛−1) = 𝑠𝑛−1´´ (𝑢𝑛)

1.2.2. Cubic Hermite spline

 Cubic Hermite spline is a spline composed from cubic Hermite arcs, so it is interpolation

spline by its definition [1]. For given control points 𝑉0, … , 𝑉𝑘 , 𝑘 ≥ 2, we need to calculate tangents

at these points in order to construct 𝐶2 continuous spline. Formal definition of 𝑖-th segment is

𝑠𝑖(𝑢) = 𝐻0
3(𝑡)𝑉𝑖 + 𝐻1

3(𝑡)𝑞𝑖⃗⃗ ⃗ + 𝐻2
3(𝑡)𝑞1⃗⃗⃗⃗ + 𝐻3

3(𝑡)𝑉𝑖+1, 𝑖 = 0,… , 𝑘 − 1

where 𝑢 ∈ [𝑎, 𝑏], 𝑡 =
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
 and 𝐻𝑖

3(𝑡), 𝑖 = 0,1,2,3 are cubic Hermite blending functions.

(Figure 1-4)

After expanding equations 𝑠𝑖´´ (1) = 𝑠𝑖+1´´ (0), we obtain system of 𝑘 − 1 equations

for 𝑘 + 1 variables. In order to solve this system we choose one end condition. Then it is possible

to find all tangents and compute each Hermite segment.

 Hermite spline is also called global spline, because each change of control vertices

modifies whole curve. We describe this property of spline as not having local control. Another

way to modify this kind of spline is to change end condition.

Figure 1-4 Relaxed Hermite spline

1.2.3. Cardinal spline

Cardinal spline is a modification of Hermite spline, in which all tangent vectors at control

points are defined by adjacent points [1]. Because of this, we do not have to choose end condition.

Again, let 𝑉0, … , 𝑉𝑘 , 𝑘 ≥ 3 be sequence of points in space and we want to interpolate these vertices

with Hermite cubic spline. Cardinal spline segment can we expressed as

12

𝑠𝑖(𝑢) = ∑ 𝐶𝑗(𝑡)𝑉𝑖+1+𝑗

2

𝑗=−1

, 𝑖 = 0,… , 𝑘 − 3

where 𝑢 ∈ [𝑎, 𝑏], 𝑡 =
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
 and 𝐶𝑗(𝑡), 𝑗 = −1,0,1,2 are cardinal blending functions.

(Figure 1-5)

Each Hermite cubic spline segment is defined by two points and two tangent vectors

at these points. We define tangent vector 𝑞𝑖⃗⃗ ⃗ = 𝑠 (𝑉𝑖+1 − 𝑉𝑖−1), 𝑠 > 0, so now each segment is

defined for foursome of points 𝑉𝑖−1𝑉𝑖𝑉𝑖+1𝑉𝑖+2. Parameter 𝑠 is called proportional coefficient as

its value represents ratio of magnitude of tangent vector 𝑞𝑖⃗⃗ ⃗ and length of line segment between

𝑉𝑖−1 and 𝑉𝑖+1. Now we define cardinal blending function 𝐶𝑖(𝑡), 𝑖 = −1, 0, 1, 2, as

𝐶−1(𝑡) = −𝑠𝑡 + 2𝑠𝑡
2 − 𝑠𝑡3

𝐶0(𝑡) = 1 + (𝑠 − 3)𝑡
2 + (2 − 𝑠)𝑡3

𝐶1(𝑡) = 𝑠𝑡 + (3 − 2𝑠)𝑡
2 + (𝑠 − 2)𝑡3

𝐶2(𝑡) = −𝑠𝑡
2 + 𝑠𝑡3

Figure 1-5 Cardinal polynomials and spline with double endpoints for 𝑠 = 1,6

These functions have property of partition of unity and cardinal spline is 𝐶0and 𝐶1

continuos, but conditions for 𝐶2 nor 𝐺2continuity are not fulfilled.

Cardinal spline interpolates vertices 𝑉𝑖, 𝑖 = 1,… , 𝑘 − 1. Points 𝑉0 and 𝑉𝑘 are free ends

of curve. We can interpolate these free ends in two ways. First method is called multiple vertices.

We add two vertices 𝑉−1 = 𝑉0 and 𝑉𝑘+1 = 𝑉𝑘, so we can create two new curve segment

for points 𝑉−1𝑉0𝑉1𝑉2 and 𝑉𝑘−2𝑉𝑘−1𝑉𝑘𝑉𝑘+1.

Following method give us better options for modelling shape of curve. This one is called

phantom vertices, because we once again add two vertices 𝑉−1 and 𝑉𝑘+1 but this time position

of these vertices is not fixed. For clamped spline we have given first derivatives at end points so

we can express 𝑉−1 and 𝑉𝑘+1 as

𝑉−1 = 𝑉0 −
1

𝑠
 𝑞0⃗⃗⃗⃗

𝑉𝑘+1 = 𝑉𝑘 +
1

𝑠
 𝑞𝑘⃗⃗⃗⃗

13

In case of relaxed spline second derivatives at end points are equal to zero vector.

Equation for new phantom points are

𝑉−1 = 𝑉1 −
3

2𝑠
 (𝑉1 − 𝑉0) +

1

2
(𝑉2 − 𝑉0)

𝑉𝑘+1 = 𝑉𝑘−1 +
3

2𝑠
 (𝑉𝑘 − 𝑉𝑘−1) +

1

2
(𝑉𝑘 − 𝑉𝑘−2)

Modelling cardinal spline is done mostly by changing proportional coefficient 𝑠, which

is global parameter, as change in its value modify tension and thus shape of whole curve. This

can cause undesirable changes in shape of curve mainly if distance between adjacent control

points are significantly different. Raising value of 𝑠 causes curve to deviate less from tangent

vectors. These curve has low tension and can create loops. Splines with lower values of 𝑠 deviate

more from tangent vector and the largest deviation occurs a 𝑠 = 0, when spline segment 𝑠𝑖 is line

segment 𝑉𝑖 𝑉𝑖+1. We define tension parameter 𝑇 as 𝑠 = (1 − 𝑇) 2⁄ so 𝑇 = 1 − 2𝑠. Spline

with proportional coefficient 𝑠 = 1 2⁄ has tension 𝑇 = 0 so it is called a spline with zero tension

or Catmull-Romm spline or Overhauser spline.

1.2.4. Bézier spline

 Bézier spline is a curve, which is composed of Bézier curve segments and can be

constructed both as interpolation and approximation spline. We assume these segments are cubic

and are joined together to be 𝐶2 continuous.

Definition of Bézier spline 𝑠 of degree 𝑛 for points 𝑉0, … , 𝑉𝑘 , 𝑘 ≥ 2 as in [5] is

𝑠𝑖(𝑢) = ∑𝐵𝑗
𝑛(𝑡)𝑉𝑖,𝑗

𝑛

𝑗=0

, 𝑖 = 0,… , 𝑘 − 1

where 𝑢 ∈ [𝑎, 𝑏], 𝑡 =
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
, 𝑉𝑖,𝑗 are control points and 𝐵𝑗

𝑛(𝑡) is 𝑗-th Bernstein polynomial

of degree 𝑛. Algorithm for constructing new control points 𝑉𝑖,𝑗 depends on type of spline.

(Figure 1-6)

Figure 1-6 Approximation and interpolation cubic Bézier spline

Assume that we have 𝑖-th cubic Bézier curve segment 𝑠𝑖 defined with control points

𝑉𝑖, 𝑉𝑖+1, 𝑉𝑖+2, 𝑉𝑖+3 and we want to add 𝑖 + 1-th segment 𝑠𝑖+1 with control vertices

𝑉𝑖+4, 𝑉𝑖+5, 𝑉𝑖+6, 𝑉𝑖+7, such that the two curves will be 𝐶2 continuous. By solving continuity

conditions we obtain equations for control points of 𝑖 + 1-th segment as in [1]:

 𝐶0 continuity:

14

𝑠𝑖(𝑢𝑖+1) = 𝑠𝑖(𝑢𝑖+1)

and thus

𝑉𝑖+3 = 𝑉𝑖+4

 𝐶1 continuity:

𝑉𝑖+5 = 𝑉𝑖+3 +
∆𝑖+1
∆𝑖

(𝑉𝑖+3 − 𝑉𝑖+2)

and thus 𝑟𝑎𝑡𝑖𝑜(𝑉𝑖+2, 𝑉𝑖+3, 𝑉𝑖+5) =
∆𝑖

∆𝑖+1
.

 𝐶2 continuity: We need to construct point 𝐷𝑖

𝐷𝑖 = 𝑉𝑖+2 +
∆𝑖+1
∆𝑖

(𝑉𝑖+2 − 𝑉𝑖+1)

for which 𝑟𝑎𝑡𝑖𝑜(𝑉𝑖+1, 𝑉𝑖+2, 𝐷𝑖) =
∆𝑖

∆𝑖+1
= 𝑟𝑎𝑡𝑖𝑜(𝐷𝑖, 𝑉𝑖+5, 𝑉𝑖+6) thus point 𝐷𝑖 is

an intersection of lines defined by 𝑉𝑖+1, 𝑉𝑖+2 and 𝑉𝑖+5, 𝑉𝑖+6. We use it in computation

of control point

𝑉𝑖+6 = 𝑉𝑖+5 +
∆𝑖+1
∆𝑖

(𝑉𝑖+5 − 𝐷𝑖)

Vertex 𝑉𝑖+7 can be positioned freely without compromising 𝐶2 continuity. If ∆𝑖 is constant

for 𝑖 = 0,… , 𝑘 − 1 then equations for control vertices 𝑉𝑖+4, 𝑉𝑖+5 and 𝑉𝑖+6 are simplified to

𝑉𝑖+5 = 𝑉𝑖+3 + (𝑉𝑖+3 − 𝑉𝑖+2)

𝑉𝑖+6 = 𝑉𝑖+5 + (𝑉𝑖+5 − 𝐷) = 𝑉𝑖+1 + 4(𝑉𝑖+3 − 𝑉𝑖+2)

Use of Bézier approximation spline is generally better approach than constructing single

Bézier curve of high degree, mainly because this single curve does not approximate control

vertices very well.

 In this case, points 𝑉𝑖,𝑗 are derived from control polygon formed by vertices 𝑉0, … , 𝑉𝑘.

In this work we use cubic Bézier spline, so 𝑛 = 3, and ∆𝑖= 1, 𝑖 = 0, … , 𝑘 − 1. We divide each

line segment 𝑉𝑖𝑉𝑖+1 by points 𝑉𝑖,𝑗 so 𝑟𝑎𝑡𝑖𝑜(𝑉𝑖, 𝑉𝑖,1, 𝑉𝑖,2) = 𝑟𝑎𝑡𝑖𝑜(𝑉𝑖,1, 𝑉𝑖,2, 𝑉𝑖+1) = 1. Now we

have to define position of vertices 𝑉𝑖,0 and 𝑉𝑖,3 to position suitable for securing 𝐶2 continuity.

 If 𝑖 = 0 or 𝑖 = 𝑘 − 1, we set 𝑉𝑖,0 = 𝑉0 or 𝑉𝑖,3 = 𝑉𝑘, respectively. In order to secure 𝐶0

continuity at joining points we have to set 𝑉𝑖,3 = 𝑉𝑖+1,0. 𝐶1 continuity will hold if

𝑉𝑖,3 = 𝑉𝑖+1,0 =
1

2
𝑉𝑖,2 +

1

2
𝑉𝑖+1,1

Finally from 𝐶2 continuity we have

𝑉𝑖+1,2 = 𝑉𝑖+1,1 + (𝑉𝑖+1,1 − 𝑉𝑖)

15

where 𝑉𝑖 = 𝐷𝑖.

 In the case of interpolation Bézier spline it is little more complicated. Once again let

𝑛 = 3 be degree of spline and ∆𝑖= 1, 𝑖 = 0,… , 𝑘 − 1. First we need to compute coordinates

of points 𝐷𝑖. We do it by expanding equations 𝑠𝑖´´ (1) = 𝑠𝑖+1´´ (0) and obtaining linear system

of 𝑘 − 1 equations for 𝑘 + 1 variables. We need to specify points 𝑉0,1 and 𝑉𝑘−1,2 via end

condition.

Now points 𝐷𝑖 are known and we use same procedure for computing points 𝑉𝑖,𝑗 as before,

but now with input consisting of points 𝐷𝑖. Then have to change position of points 𝑉𝑖,0 and 𝑉𝑖,3

(which now have same coordinates as 𝐷0 and 𝐷𝑘) to

𝑉𝑖,0 = 𝑉0, 𝑉𝑖,3 = 𝑉𝑘

in order to interpolate these vertices.

 We rasterize Bézier spline with de Casteljau algorithm. Each segment has its own control

polygon and we use its control points for algorithm.

Approximation Bézier spline is a spline with local control. Change in position of control

point 𝑉𝑖 modifies 𝑖 − 2, 𝑖 − 1, 𝑖 and 𝑖 + 1-th segments. Interpolation Bézier spline is a global one.

1.2.5. Beta-Spline

 Beta spline is a cubic curve on a given sequence of control vertices 𝑉0, … , 𝑉𝑘, 𝑘 ≥ 4

in space composed of segments defined in [1] as

𝑠𝑖(𝛽1, 𝛽2, 𝑡) = ∑𝑄𝑗(𝛽1, 𝛽2, 𝑡)

3

𝑗=0

𝑉𝑖+𝑗, 𝑖 = 0,… , 𝑘 − 3

where 𝑢 ∈ [𝑎, 𝑏], 𝑡 =
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
. (Figure 1-7) Blending functions 𝑄𝑗(𝛽1, 𝛽2, 𝑡) are defined in a way

to secure 𝐺2 continuity for a whole curve in [5] as

𝑄0(𝑡) =
2𝛽1

3 − 6𝛽1
3𝑡 + 𝛽1

3𝑡2 − 2𝛽1
3𝑡3

𝛿

𝑄1(𝑡)

=
(4𝛽1

2 + 4𝛽1 + 𝛽2) + (6𝛽1
3 − 6𝛽1)𝑡 − 3(2𝛽1

3 + 2𝛽1
2 + 𝛽2)𝑡

2 + 2(𝛽1
3 + 𝛽1

2 + 𝛽1 + 𝛽2)𝑡
3

𝛿

𝑄2(𝑡) =
2 + 6𝛽1𝑡 + 3(2𝛽1

2 + 𝛽2)𝑡
2 − 2(𝛽1

2 + 𝛽1 + 𝛽2 + 1)𝑡
3

𝛿

𝑄3(𝑡) =
2𝑡3

𝛿

0 ≠ 𝛿 = 2𝛽1
3 + 4𝛽1

2 + 4𝛽1𝑡
2 + 𝛽2 + 2

If 𝛽1 > 0 and 𝛽2 ≥ 0, then these functions have property partition of unity and non-negativity,

thus whole curve lies inside convex hull of its defining control polygon.

16

Figure 1-7 Beta polynomials and Beta spline for 𝛽1 = 3 and 𝛽2 = 10

End points of curve segment 𝑠𝑖 satisfy equations

𝑠𝑖(𝛽1, 𝛽2, 0) =
1

𝛿
[2𝛽1

3 𝑉𝑖 + (4𝛽1
2 + 4𝛽1 + 𝛽2)𝑉𝑖+1 + 2 𝑉𝑖+2]

𝑠𝑖(𝛽1, 𝛽2, 1) =
1

𝛿
[2𝛽1

3 𝑉𝑖+1 + (4𝛽1
2 + 4𝛽1 + 𝛽2)𝑉𝑖+2 + 2 𝑉𝑖+3]

so for 𝛽1 > 0 and 𝛽2 ≥ 0 they are inside of triangles formed by 𝑉𝑖, 𝑉𝑖+1, 𝑉𝑖+2 and 𝑉𝑖+1, 𝑉𝑖+2, 𝑉𝑖+3,

respectively. Spline’s starting and ending points are then inside of triangles formed by 𝑉0, 𝑉1, 𝑉2

and 𝑉𝑘−2, 𝑉𝑘−1, 𝑉𝑘, respectivelly.

Once again we can change spline’s end by multiple vertices method or by phantom

vertices. Multiple vertices work by adding new control points 𝑉−1 = 𝑉0 and 𝑉𝑘+1 = 𝑉𝑘 creating

new ending points

𝑠−1(𝛽1, 𝛽2, 0) = 𝑉0 +
1

𝛿
[𝑉1 − 𝑉0]

𝑠𝑘−2(𝛽1, 𝛽2, 1) = 𝑉𝑘 +
2𝛽1

3

𝛿
[𝑉𝑘−1 − 𝑉𝑘]

or by adding new control points 𝑉−2 = 𝑉0, 𝑉−1 = 𝑉0, 𝑉𝑘+1 = 𝑉𝑘 and 𝑉𝑘+2 = 𝑉𝑘. The result is

curve interpolating control points 𝑉0 and 𝑉𝑘.

 Phantom vertices method adds new control points 𝑉−1 and 𝑉𝑘+1 in such way, that

𝑠0´(𝛽1, 𝛽2, 0) = 𝑞0⃗⃗⃗⃗

𝑠𝑘−3´(𝛽1, 𝛽2, 1) = 𝑞1⃗⃗⃗⃗

or adds another points 𝑉−2 and 𝑉𝑘+2 to create relaxed spline - curve with zero curvature

𝑠0´´(𝛽1, 𝛽2, 0) = 0⃗

𝑠𝑘−3´´(𝛽1, 𝛽2, 1) = 0⃗

 We can change shape of Beta-spline by modifying 𝛽1 and 𝛽2 parameters. Parameter 𝛽1 is

called bias and we can express it as

𝛽1 =
|𝑠𝑖+1´(𝛽1, 𝛽2, 0)|

|𝑠𝑖´(𝛽1, 𝛽2, 1)|

17

For parameter 𝛽1 > 1 is 𝑖 + 1-th segment more attracted to common tangent than 𝑖-th segment

and for 0 < 𝛽1 < 1 vice versa. If 𝛽1 = 1 then deviation from said tangent is the same for both

segments. Parameter 𝛽2 affects how much joining point 𝑆𝑖 of two following segments 𝑖 and 𝑖 + 1

are attracted to corresponding control vertex 𝑉𝑖+2.

𝑠𝑖(𝛽1, 𝛽2, 1) =
1

𝛿
[2𝛽1

3 𝑉𝑖+1 + (4𝛽1
2 + 4𝛽1 + 𝛽2)𝑉𝑖+2 + 2 𝑉𝑖+3] = 𝑆𝑖

Now if we define 𝑘 = 𝛿 − 𝛽2 and

𝐾𝑖 = 2𝛽1
3 𝑉𝑖+1 + (4𝛽1

2 + 4𝛽1)𝑉𝑖+2 + 2 𝑉𝑖+3

we obtain equation

𝑆𝑖 − 𝑉𝑖+2 =
1

𝑘 + 𝛽2
[𝐾𝑖 + 𝑘𝑉𝑖+2]

For parameter 𝛽2 > 0 point 𝑆𝑖 is approaching point 𝑉𝑖+2, for 𝛽2 < 0 we get same effect

but some of blending functions can be negative and thus curve will not be in convex hull formed

by control polygon. If 𝛽2 → −𝑘 then point 𝑆𝑖 is pushed away from point 𝑉𝑖+2. We can conclude

that parameter 𝛽2 changes tension of spline so we call it tension parameter.

1.2.6. B-spline

 B-spline is approximation curve for given control polygon and important role

in modelling of this type of curve is played by knot vector. We can define B-spline of degree 𝑘

for given control vertices 𝑉0, … , 𝑉𝑛 and knot vector 𝑈 = {𝑢𝑖}𝑖=0
𝑚 where 𝑚 = 𝑛 + 𝑘 + 1 as in [10]

by equation

𝑠(𝑢) =∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑉𝑖

𝑛

𝑖=0

where 𝑢 ∈ [𝑢𝑘 , 𝑢𝑚−𝑘) and 𝑁𝑗
𝑘(𝑈, 𝑢) are B-spline basis functions. (Figure 1-8)

Figure 1-8 B-spline of degree 𝑛 = 3 with uniform knot vector

 Knot vector 𝑈 is a non-decreasing sequence of numbers 𝑢𝑖 such that 𝑈 = {𝑢𝑖}𝑖=0
𝑚 .

Elements 𝑢𝑖 are called knots. For each 𝑢𝑖 we define 𝑗 = arg𝑚𝑖𝑛𝑙≤𝑖 {𝑢𝑙 = 𝑢𝑖 } and

𝑘 = arg𝑚𝑎𝑥𝑙≥𝑖 {𝑢𝑙 = 𝑢𝑖 }. We call number 𝜇(𝑢𝑖) = 𝑘 − 𝑗 + 1 multiplicity of a knot 𝑢𝑖. Knots

𝑢0, … , 𝑢𝜇(𝑢0) and 𝑢𝑚−𝜇(𝑢𝑚), … , 𝑢𝑚 are called external knots and all knots between them are called

internal knots. Most used types of knot vector are open, uniform or non-uniform.

 Uniform knot vector, sometimes also called periodic, has all or only internal knots equally

spaced and usually begins at zero. It also can be normalized, so each 𝑢𝑖 ∈ [0, 1]. Non-uniform

18

knot vector is unevenly spaced or has multiple knots. Open knot vector has external knots

of multiplicity 𝑘 + 1.

 Assume 𝑘 is a given degree of B-spline basis function 𝑁𝑖
𝑘(𝑈, 𝑢) and 𝑈 = {𝑢𝑖}𝑖=0

𝑚 ,

𝑚 = 𝑛 + 𝑘 + 1, is knot vector in which every knot has maximum knot multiplicity of 𝑘 + 1. We

define functions 𝑁𝑖
𝑘(𝑈, 𝑢) recursively as in [10] by equations

𝑁𝑖
0(𝑈, 𝑢) = {

1 𝑖𝑓 𝑢 ∈ [𝑢𝑖, 𝑢𝑖+1)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑖 = 0,… ,𝑚 − 1

𝑁𝑖
𝑙(𝑈, 𝑢) = {

𝑢 – 𝑢𝑖
𝑢𝑖+𝑙 − 𝑢𝑖

𝑁𝑖
𝑙−1(𝑈, 𝑢) +

𝑢𝑖+𝑙+1 – 𝑢

𝑢𝑖+𝑙+1 − 𝑢𝑖+1
𝑁𝑖+1
𝑙−1(𝑈, 𝑢) 𝑢 ∈ [𝑢𝑖 , 𝑢𝑖+𝑙+1)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 for 𝑖 = 0,… ,𝑚 − 𝑙 − 1 and 𝑙 = 1,… , 𝑘. To avoid zero denominator and thus zero division

problem we consider this summand equal to zero. In case of 𝑢𝑖 = 𝑢𝑖+1 we define 𝑁𝑖
0(𝑈, 𝑢) = 0.

(Figure 1-9 and Figure 1-10)

Figure 1-9 B-spline polynomials of degree 𝑛 = 3 for uniform knot vector 𝑈 = {0, 1, 2, 3, 4, 5, 6, 7}
and for open knot vector 𝑈 = {0, 0, 0, 0, 1, 1, 1, 1}, respectively

Figure 1-10 B-spline polynomials of degree 𝑛 = 3 for knot vector 𝑈 = {0, 1, 2, 3, 4, 5.5, 5.5, 6}
and for knot vector 𝑈 = {0, 1, 1.5, 1.75, 2, 2, 5.25, 5.5}, respectively

 B-spline basis functions have these properties:

 Non-negativity:

𝑁𝑖
𝑘(𝑈, 𝑢) ≥ 0, 𝑢 ∈ 𝑅, 𝑖 = 0,… ,𝑚 − 𝑘 − 1

 Local support:

𝑁𝑖
𝑘(𝑈, 𝑢) = 0, 𝑢 ∉ [𝑢𝑖, 𝑢𝑖+𝑘+1)

𝑁𝑖
𝑘(𝑈, 𝑢) ≥ 0, 𝑢 ∈ [𝑢𝑖, 𝑢𝑖+𝑘+1)

for 𝑖 = 0,… ,𝑚 − 𝑘 − 1.

 Partition of unity:

19

∑ 𝑁𝑖
𝑘(𝑈, 𝑢)

𝑚−𝑘

𝑖=0

= 1, 𝑢 ∈ [𝑢𝑛, 𝑢𝑚−𝑘)

 Derivative:

𝑑

𝑑𝑢
𝑁𝑖
𝑘(𝑈, 𝑢) = 𝑘 (

1

𝑢𝑖+𝑘 − 𝑢𝑖
𝑁𝑖
𝑘−1(𝑈, 𝑢) −

1

𝑢𝑖+𝑘+1 − 𝑢𝑖+1
𝑁𝑖+1
𝑘−1(𝑈, 𝑢))

for 𝑖 = 0,… ,𝑚 − 𝑘 − 1 if derivative at 𝑢 exists.

 Linear independence: Functions 𝑁𝑖
𝑘(𝑈, 𝑢) are linear independent for

𝑖 = 0,… ,𝑚 − 𝑘 − 1.

 Uni-modality: Function 𝑁𝑖
𝑘(𝑈, 𝑢) has exactly one maximum for 𝑖 = 0,… ,𝑚 − 𝑘 − 1

and 𝑘 ≥ 1

 Periodicity: This property is valid only for uniform knot vector.

𝑁𝑖
𝑘(𝑈, 𝑢) = 𝑁𝑖−1

𝑘 (𝑈, 𝑢 − 𝑑) = 𝑁𝑖+1
𝑘 (𝑈, 𝑢 + 𝑑) , 𝑑 = 𝑢𝑖 − 𝑢𝑖−1

 Recursive property:

𝑁𝑖
𝑘(𝑈, 𝑢) =

𝑢 – 𝑢𝑖
𝑢𝑖+𝑘 − 𝑢𝑖

𝑁𝑖
𝑘−1(𝑈, 𝑢) +

𝑢𝑖+𝑘+1 – 𝑢

𝑢𝑖+𝑘+1 − 𝑢𝑖+1
𝑁𝑖+1
𝑘−1(𝑈, 𝑢)

for 𝑖 = 0,… ,𝑚 − 𝑘 − 1

Proofs of these properties can be found in [10].

B-spline curve has following properties [9]:

 B-spline curve 𝑠(𝑢) generally follows shape of control polygon 𝑉𝑖, 𝑖 = 0,… , 𝑛.

 Domain for curve is interval 𝑢 ∈ [𝑢𝑘, 𝑢𝑚−𝑘).

 Local modelling: Curve segment corresponding to interval 𝑢 ∈ [𝑢𝑖 , 𝑢𝑖+1),

𝑘 ≤ 𝑖 ≤ 𝑚 − 𝑘 − 1 is designated by 𝑘 + 1 control vertices 𝑉𝑖−𝑘, … , 𝑉𝑖.

 Convex hull property: For 𝑢 ∈ [𝑢𝑖, 𝑢𝑖+1), 𝑘 ≤ 𝑖 ≤ 𝑚 − 𝑘 − 1 point on curve 𝑠(𝑢) lies

in convex hull formed by vertices 𝑉𝑖−𝑘 , … , 𝑉𝑖.

 Variation diminishing [10]: Intersection of control polygon and any hyperplane creates

at least same number of points of intersection as number of intersections of said

hyperplane and B-spline curve.

 Continuity: B-spline is 𝐶𝑘−𝜇(𝑢𝑖) continuous at points 𝑠(𝑢𝑖) and 𝐶∞ continuous

everywhere else. If internal knot 𝑢𝑖 has multiplicity of 𝑘 + 1, then curve can be 𝐶0

uncontinuous.

 Derivatives [9]:

𝑑𝑙𝑠(𝑢)

𝑑𝑢𝑙
= 𝑘 … (𝑘 − 𝑙 + 1)∑𝑁𝑖

𝑛−𝑙(𝑈, 𝑢)∆𝑙 𝑉𝑖

𝑛−𝑙

𝑖=0

where ∆𝑙 𝑉𝑖 is a vector defined recursively as

 ∆0𝑉𝑖 = 𝑉𝑖

∆1 𝑉𝑖 =
𝑉𝑖+1 − 𝑉𝑖

𝑢𝑖+𝑘+1 − 𝑢𝑖+1

20

∆𝑙 𝑉𝑖 = ∆
1(∆𝑙−1 𝑉𝑖) =

∆𝑙−1 𝑉𝑖+1 − ∆
𝑙−1 𝑉𝑖

𝑢𝑖+𝑘+1 − 𝑢𝑖+𝑙

 Invariance under affine transformation:

𝑇(𝑠(𝑢)) = 𝑇 (∑𝑁𝑖
𝑛(𝑈, 𝑢)𝑉𝑖

𝑛

𝑖=0

) =∑𝑁𝑖
𝑛(𝑈, 𝑢)𝑇(𝑉𝑖)

𝑛

𝑖=0

where 𝑇 is an affine transformation.

Cubic B-spline curve segment with periodic knot vector has end points defined by these

equations [1]

𝑠(𝑢3+𝑖) =
1

6
(𝑉𝑖 + 4𝑉𝑖+1 + 𝑉𝑖+2) = 𝑉𝑖+1 +

1

3
(
𝑉𝑖 + 𝑉𝑖+2

2
− 𝑉𝑖+1)

𝑠(𝑢3+𝑖+1) =
1

6
(𝑉𝑖+1 + 4𝑉𝑖+2 + 𝑉𝑖+3) = 𝑉𝑖+2 +

1

3
(
𝑉𝑖+1 + 𝑉𝑖+3

2
− 𝑉𝑖+2)

for 𝑖 = 0,… , 𝑛 − 3. Both points are anti-centroid of triangle formed by 𝑉𝑖𝑉𝑖+1𝑉𝑖+2 and

𝑉𝑖+1𝑉𝑖+2𝑉𝑖+3, respectively. First and second derivatives at end points of segment are defined by

following equations

𝑠´(𝑢3+𝑖) =
1

2
(𝑉𝑖+2−𝑉𝑖)

𝑠´(𝑢3+𝑖+1) =
1

2
(𝑉𝑖+3−𝑉𝑖+1)

𝑠´´(𝑢3+𝑖) = (𝑉𝑖 − 2𝑉𝑖+1 + 𝑉𝑖+2) = (𝑉𝑖 − 𝑉𝑖+1) + (𝑉𝑖+2 − 𝑉𝑖+1)

𝑠´´(𝑢3+𝑖+1) = (𝑉𝑖+1 − 2𝑉𝑖+2 + 𝑉𝑖+3) = (𝑉𝑖+1 − 𝑉𝑖+2) + (𝑉𝑖+3 − 𝑉𝑖+2)

We can control end points by applying multiple coincident vertices [2]. By defining

multiple coincident vertices at endpoint of the B-spline curve resulting curve is pulled toward

to vertex with modified multiplicity. If multiplicity of this vertex is 𝑘 (for B-spline of degree 𝑘),

then B-spline interpolates this vertex and tangent vector at this point is parallel to first or last

adjacent control polygon span with non-zero length. If we set multiplicity of an end point to

𝑘 + 1, first or last segment of curve will be a line segment parallel to first or last control polygon

span. This can be unpleasant for modelling and use of open knot vector is better for purpose

of interpolating starting and ending points.

Process of knot insertion is usually performed to gain better control of curve or

to enumerate curve at given parametric value. After knot insertion curve’s shape remains the same

but control polygon will change and also number of curve segments will be increased by one.

If we insert just one knot, then we are talking about knot insertion but if we insert multiple knots

then we call it knot refinement.

Let 𝑠(𝑢) be a B-spline curve of degree 𝑘 with control vertices 𝑉0, … , 𝑉𝑛 and 𝑈 =

 {𝑢𝑖}𝑖=0
𝑚 ,𝑚 = 𝑛 + 𝑘 + 1, is its knot vector. We insert new knot 𝑢∗ ∈ [𝑢𝑗, 𝑢𝑗+1) to create new

knot vector 𝑈∗ = {𝑢𝑖
∗}𝑖=0
𝑚+1, such that

21

𝑢𝑖
∗ = {

𝑢𝑖 𝑖 = 0,… , 𝑗
𝑢∗ 𝑖 = 𝑗 + 1

𝑢𝑖 − 1 𝑖 = 𝑗 + 2,… ,𝑚 + 1

Determining new control vertices for curve of identical shape

𝑠(𝑢) = ∑𝑁𝑖
𝑘(𝑈∗, 𝑢)𝑉𝑖

∗

𝑛+1

𝑖=0

yields [9]

𝑉𝑖
∗ = {

𝑉𝑖 0 ≤ 𝑖 ≤ 𝑗 − 𝑘
(1 − 𝛼𝑖)𝑉𝑖−1 + 𝛼𝑖𝑉𝑖 𝑗 − 𝑘 + 1 ≤ 𝑖 ≤ 𝑗

𝑉𝑖−1 𝑗 + 1 ≤ 𝑖 ≤ 𝑛 + 1
, 𝛼𝑖 =

𝑢𝑗 − 𝑢𝑖

𝑢𝑖+𝑘 − 𝑢𝑖

Shown procedure is known as Boehm’s algorithm.

“Unfortunately, this so called knot removal procedure cannot be carried out in general without

changing the shape of the spline curve. Obviously, the only exception occurs if a knot has been

inserted artificially before or, in other words, if the continuity order at the respective knot is higher

than it should be according to its multiplicity. Thus, the necessity to interpret the knot removal

process as an approximation process is manifest.” [8]

 For given B-spline curve with degree 𝑘, we remove knot 𝑢𝑠, such that 𝑢𝑠 ≠ 𝑢𝑠+1, which

has multiplicity 𝑚, then new control points are defined as in [2] by equation

𝑉𝑖
∗ = {

𝑉𝑖
(𝑉𝑖 − (1 − 𝛼𝑖)𝑉𝑖−1

∗)/𝛼𝑖
(𝛽𝑖𝑉𝑖 − 𝛽𝑖𝑉𝑖

∗)/(1 − 𝛽𝑖)
𝑉𝑖+1

0 ≤ 𝑖 ≤ 𝑠 − 𝑘 − 1
𝑠 − 𝑘 ≤ 𝑖 ≤ 𝑐
𝑐 < 𝑖 ≤ 𝑠 −𝑚

𝑠 −𝑚 + 1 ≤ 𝑖 ≤ 𝑛 − 1

𝑐 =
𝑘 −𝑚 + 1

𝑠 −𝑚

𝛼𝑖 =
𝑢𝑗 − 𝑢𝑖

𝑢𝑖+𝑘 − 𝑢𝑖
, 𝛽𝑖 =

𝑢𝑗+1 − 𝑢𝑖+1

𝑢𝑖+𝑘+1 − 𝑢𝑖+1

 We use de Boor algorithm for evaluating B-spline curve of degree 𝑘. Similarly

to de Casteljau algorithm this algorithm makes use of recursive property of B-spline basis function

𝑁𝑖
𝑘(𝑈, 𝑢) =

𝑢 – 𝑢𝑖
𝑢𝑖+𝑘 − 𝑢𝑖

𝑁𝑖
𝑘−1(𝑈, 𝑢) +

𝑢𝑖+𝑘+1 – 𝑢

𝑢𝑖+𝑘+1 − 𝑢𝑖+1
𝑁𝑖+1
𝑘−1(𝑈, 𝑢)

for 𝑖 = 0,… ,𝑚 − 𝑘 − 1. Given parameter 𝑢 ∈ [𝑢𝑘 , 𝑢𝑚−𝑘) we start by finding knot interval

[𝑢𝑟, 𝑢𝑟+1) such that 𝑢 ∈ [𝑢𝑟, 𝑢𝑟+1). Then we define

𝑟𝑖
0(𝑢) = 𝑉𝑖, 𝑖 = 𝑟 − 𝑘,… , 𝑟

and then compute

𝑟𝑖
𝑗(𝑢) = (1 − 𝛼𝑖

𝑗
) 𝑟𝑖−1

𝑗−1(𝑢) + 𝛼𝑖
𝑗
 𝑟𝑖
𝑗−1(𝑢), 𝑖 = 𝑟 − 𝑘 + 𝑗,… , 𝑟, 𝑗 = 1,… , 𝑘

 where 𝛼𝑖
𝑗
(𝑢) =

𝑢−𝑢𝑖

𝑢𝑖+𝑘+1−𝑗−𝑢𝑖
. In the last step we obtain point

𝑟𝑟
𝑘(𝑢) = 𝑠(𝑢)

22

and it is a point on curve corresponding to parametric value of 𝑢.

 We can modify shape of B-spline by various ways, most obvious is changing knot vector.

We can also change positions and multiplicity of control points or use multiple knot values.

1.3. Rational curves

 All curve described so far were subsets of points from 𝐸2 or 𝐸3 and we call them integral

curves. Rational curves were introduced to further augment control over shape of curve. Point

(𝑥, 𝑦, 𝑧) is now represented by homogenous coordinates (𝑋, 𝑌, 𝑍,𝑊), where

𝑥 =
𝑋

𝑊
, 𝑦 =

𝑌

𝑊
, 𝑧 =

𝑍

𝑊
,𝑊 ≠ 0

This construction is usually visualized as central projection with centre of projection being point

with coordinates (0,0,0,1) to hyperplane given by equation 𝑊 = 1. We add weight 𝑤𝑖 to each

control point 𝑉𝑖 such that 𝑉𝑖
𝑤 = (𝑤𝑖𝑉𝑖, 𝑤𝑖) = (𝑤𝑖𝑋𝑖 , 𝑤𝑖𝑌𝑖 , 𝑤𝑖𝑍𝑖 , 𝑤𝑖).

 Now any integral curve of degree 𝑛 can be defined by equation as in [1]

𝑟𝑤(𝑢) = 𝑅(𝑢) = ∑𝑇𝑖(𝑢)𝑉𝑖
𝑤

𝑛

𝑖=0

where 𝑇𝑖(𝑢) are blending functions. We project this curve integral 𝑅(𝑢) to the hyperplane

𝑊 = 1 and there we can express curve 𝑟(𝑢) as

𝑟(𝑢) =
𝑅(𝑢)

𝑊(𝑢)
=
∑ 𝑇𝑖(𝑢)𝑤𝑖𝑉𝑖
𝑛
𝑖=0

∑ 𝑇𝑖(𝑢)
𝑛
𝑖=0 𝑤𝑖

=∑𝑅𝑖(𝑢)𝑉𝑖

𝑛

𝑖=0

where blending functions 𝑅𝑖(𝑢) defined as

𝑅𝑖(𝑢) =
𝑇𝑖(𝑢)𝑤𝑖

∑ 𝑇𝑗(𝑢)𝑤𝑗
𝑛
𝑗=0

are now rational polynomials and hence we call curve 𝑟(𝑢) rational curve.

1.3.1. Rational Bézier curve

 Rational Bézier curve is expansion of Bézier curve. For given control points 𝑉0, … , 𝑉𝑛 and

their weights 𝑤𝑖 ≥ 0, 𝑖 = 0,… , 𝑛, we define rational Bézier curve of degree 𝑛 as

𝑐(𝑡) =
𝐶(𝑡)

𝑊(𝑡)
=
∑ 𝐵𝑖

𝑛(𝑡)𝑤𝑖𝑉𝑖
𝑛
𝑖=0

∑ 𝐵𝑖
𝑛(𝑡)𝑛

𝑖=0 𝑤𝑖
=∑𝑅𝑖

𝑛(𝑡)𝑉𝑖

𝑛

𝑖=0

𝑅𝑖
𝑛(𝑡) =

𝐵𝑖
𝑛(𝑡)𝑤𝑖

∑ 𝐵𝑗
𝑛(𝑡)𝑤𝑗

𝑛
𝑗=0

where 𝑡 ∈ [0, 1] and 𝐵𝑖
𝑛(𝑡) are Bernstein polynomials of degree 𝑛. Rational blending functions

𝑅𝑖
𝑛(𝑡) are generalisation of Bernstein polynomials so they have same properties and if all 𝑤𝑖 are

equal, we obtain Bernstein polynomials. (Figure 1-11)

23

Figure 1-11 Rational Bernstein polynomials and Bézier arc of degree 𝑛 = 3 with weights 𝑤0 = 𝑤2 = 𝑤3 = 1,𝑤1 =
4

Rational Bézier curve has properties as integral Bézier curve apart from these [9]:

 Convex hull property: If 𝑤𝑖 ≥ 0, 𝑖 = 0,… , 𝑛 then every point of a rational Bézier curve

lies inside the convex hull of its control polygon. If even a single weights is negative, this

property does not hold.

 Invariance under projective transformation:

𝑃(𝑐(𝑡)) = 𝑃 (∑𝑅𝑖
𝑛(𝑡)𝑉𝑖

𝑛

𝑖=0

) = ∑𝑅𝑖
𝑛(𝑡)𝑃(𝑉𝑖)

𝑛

𝑖=0

where 𝑃 is an projective transformation. This is stronger condition than invariance under

affine transformation [3].

 Derivative:

𝑑

𝑑𝑡
𝑐(𝑡) =

𝐶´(𝑡)

𝑊(𝑡)
− 𝑐(𝑡)

𝑊´(𝑡)

𝑊(𝑡)

Tangents at end points are

𝑑

𝑑𝑡
𝑐(0) = 𝑛

𝑤1
𝑤0
(𝑉1 − 𝑉0)

𝑑

𝑑𝑡
𝑐(1) = 𝑛

𝑤𝑛−1
𝑤𝑛

(𝑉𝑛 − 𝑉𝑛−1)

 Degree elevation and reduction: Same as for Bézier arc, we can represent curve of degree

𝑛 as curve of degree 𝑛 + 1 or approximate said curve with curve of degree 𝑛 − 1.

Algorithms for obtaining new control points ate the same, but they work

with homogenous coordinates.

Slight modification of de Casteljau algorithm is used for enumerating rational Bézier

curve. We can use standard algorithm but now each point considered in algorithm have expanded

affine coordinates. Final point on curve is then obtained by projecting calculated point

to hyperplane 𝑊 = 1

𝑣0
𝑛(𝑡) = (𝑋, 𝑌, 𝑍,𝑊) ⟶ (

𝑋

𝑊
,
𝑌

𝑊
,
𝑍

𝑊
) = 𝑐(𝑡)

Another approach is to project each point obtained in algorithm right after its enumeration

to hyperplane 𝑊 = 1.

24

By modifying weights we can control how much the curve is pulled toward to control

points. Now assume rational Bézier curve with all weights 𝑤𝑖 having same non-zero value.

Resulting curve has same shape as integral curve regardless of weight value. Increasing ratio

of one weight 𝑤𝑖 relative to others pulls the curve closer to control vertex 𝑉𝑖 and away from other

control vertices.

Important property of rational Bézier curve is ability to represent conic sections. Given

control vertices 𝑉0, 𝑉1 and 𝑉2 with theirs non-negative weights 𝑤0, 𝑤1 and 𝑤2, quadratic rational

Bézier curve is defined by

𝑐(𝑡) =
∑ 𝐵𝑖

2(𝑡)𝑤𝑖𝑉𝑖
2
𝑖=0

∑ 𝐵𝑗
2(𝑡)𝑤𝑗

2
𝑗=0

=
(1 − 𝑡)2𝑤0𝑉0 + 2𝑡(1 − 𝑡)𝑤1𝑉1 + 𝑡

2𝑤2𝑉2
(1 − 𝑡)2𝑤0 + 2𝑡(1 − 𝑡)𝑤1 + 𝑡

2𝑤2

Type of conic section is defined by denominator

𝑊(𝑡) = (𝑤0 − 2𝑤1 +𝑤2)𝑢
2 + 2(𝑤1 −𝑤0)𝑡 + 𝑤0

Discriminant for this quadratic equation is 𝑤1
2 −𝑤2𝑤0 so if

 𝑤1
2 −𝑤2𝑤0 < 0 then type of conic section is ellipse

 𝑤1
2 −𝑤2𝑤0 = 0 then type of conic section is parabola

 𝑤1
2 −𝑤2𝑤0 > 0 then type of conic section is hyperbola

If we choose weights 𝑤0 = 𝑤2 = 1 then previous conditions are simplified to:

 𝑤1
2 < 1 ⟹ 𝑤1 ∈ (−1,1) ⟹ 𝑤1 ∈ (0,1) conic section is ellipse

 𝑤1
2 = 1⟹ 𝑤1 = ±1⟹ 𝑤1 = 1 conic section is parabola

 𝑤1
2 > 1 ⟹ 𝑤1 ∈ (−∞, 1) ∪ (1,∞) ⟹ 𝑤1 > 1 conic section is hyperbola

 It is more convenient for designers to choose position of point on curve for some

parametric value, for example 𝑡 = 1 2⁄ , rather than weight 𝑤1. This point 𝑆 is called shoulder

point.

𝑆 = 𝑐 (
1

2
) =

1
2
(𝑉0 + 𝑉2) + 𝑤1𝑉1

1 + 𝑤1
=

1

1 + 𝑤1
𝑀 +

𝑤1
1 + 𝑤1

𝑉1 = (1 − 𝑠)𝑀 + 𝑠𝑉1

where 𝑀 is midpoint of control points 𝑉0 and 𝑉2 and parameter 𝑠 =
𝑤1

1+𝑤1
. By moving point on

curve 𝑆 along line segment 𝑀𝑉1 designer change value of 𝑠 and obtain line segment 𝑉0𝑉2

for 𝑠 = 0, ellipse for 𝑠 ∈ (0, 1 2⁄), parabola for 𝑠 = 1 2⁄ and hyperbola for 𝑠 ∈ (1 2⁄ , 1).

1.3.2. Rational Bézier spline

 Rational Bézier spline for control points 𝑉0, … , 𝑉𝑘, 𝑘 ≥ 2 and their weights

𝑤0, … , 𝑤𝑘 ≥ 0 is defined as

𝑠𝑖(𝑢) =
∑ 𝐵𝑗

𝑛(𝑡)𝑤𝑖,𝑗𝑉𝑖,𝑗
𝑛
𝑗=0

∑ 𝐵𝑗
𝑛(𝑡)𝑤𝑖,𝑗

𝑛
𝑗=0

, 𝑖 = 0,… , 𝑘 − 1

25

where 𝑢 ∈ [𝑎, 𝑏], 𝑡 =
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
, 𝑉𝑖,𝑗 are control points, 𝑤𝑖,𝑗 are their weights and 𝐵𝑗

𝑛(𝑡) is 𝑗-th

Bernstein polynomial of degree 𝑛. New control points 𝑉𝑖,𝑗 are again derived from control points

𝑉𝑖, 𝑖 = 0,… , 𝑘 depending on type of spline, but using homogenous coordinates.

We use de Casteljau algorithm for rational Bézier arc in order to evaluate point on spline.

1.3.3. Rational B-splines curve - NURBS

 “Rational B-splines provide a single precise mathematical form capable of representing

the common analytical shapes – lines, planes, conic curves including circles, free form curves,

quadric and sculptured surfaces – that are used in computer graphics and computer aided design.”

[2]

For given control points 𝑉0, … , 𝑉𝑛, their weights 𝑤𝑖 ≥ 0, 𝑖 = 0,… , 𝑛 and knot vector 𝑈 =

 {𝑢𝑖}𝑖=0
𝑚 ,𝑚 = 𝑛 + 𝑘 + 1, we define rational B-Spline curve of degree 𝑘

𝑠(𝑢) =
𝑆(𝑢)

𝑊(𝑢)
=
∑ 𝑁𝑖

𝑘(𝑈, 𝑢)𝑤𝑖𝑉𝑖
𝑛
𝑖=0

∑ 𝑁𝑗
𝑘(𝑈, 𝑢)𝑛

𝑗=0 𝑤𝑗
=∑𝑅𝑖

𝑘(𝑢)𝑉𝑖

𝑛

𝑖=0

𝑅𝑖
𝑘(𝑢) =

𝑁𝑖
𝑘(𝑈, 𝑢)𝑤𝑖

∑ 𝑁𝑗
𝑘(𝑈, 𝑢)𝑤𝑗

𝑛
𝑗=0

where 𝑢 ∈ [𝑢𝑘 , 𝑢𝑚−𝑘) and 𝑅𝑖
𝑘(𝑈, 𝑢) is 𝑖-th rational B-spline basis function of degree 𝑘. Rational

B-spline basis functions 𝑅𝑖
𝑘(𝑈, 𝑢) are generalisation of B-spline basis and thus inherit nearly all

properties of non-rational functions. If all weights 𝑤𝑖 have same value then rational B-spline basis

functions 𝑅𝑖
𝑘(𝑈. 𝑢) become B-spline basis functions 𝑁𝑖

𝑘(𝑈, 𝑢). Periodicity for uniform knot

vector is preserved only if all weights have same value. (Figure 1-12)

Figure 1-12 Rational B-spline polynomials and NURBS spline of degree 𝑛 = 3 for uniform knot vector

and weights 𝑤𝑖 = {1, 4, 1, 1, 4}

NURBS Spline has same properties as integral B-spline, apart from following [9]:

 Convex hull property: If 𝑤𝑖 ≥ 0, 𝑖 = 0,… , 𝑛 then every point of NURBS curve lies inside

convex hull defined by control polygon.

 Invariance under projective transformation:

𝑃(𝑠(𝑢)) = 𝑃(∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑉𝑖

𝑘

𝑖=0

) =∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑃(𝑉𝑖)

𝑘

𝑖=0

26

where 𝑃 is an projective transformation. This is stronger condition than invariance under

affine transformation [3].

 Derivative:

𝑑

𝑑𝑡
𝑠(𝑢) =

𝑆´(𝑢)

𝑊(𝑢)
− 𝑠(𝑢)

𝑊´(𝑢)

𝑊(𝑢)

Derivatives at ending points are given by equations [2]

𝑠´(𝑢𝑘) = (𝑘 − 1)
𝑤1
𝑤0
(𝑉1 − 𝑉0)

𝑠´(𝑢𝑚−𝑘) = (𝑘 − 1)
𝑤𝑛−1
𝑤𝑛

(𝑉𝑛 − 𝑉𝑛−1)

so once again tangent vectors at ending points are parallel to first and last control polygon span.

Algorithms for knot insertion and knot removal are almost the same, but now they work

with homogenous coordinates. We use rational de Boor algorithm for enumeration of rational

B-spline curve. Similarly to modification of de Casteljau algorithm we choose one of two

approaches. First one is to compute all intermediate results in homogenous coordinates and

in second one we project these results into hyperplane 𝑊 = 1 after each step.

 With rational B-spline curve we can also represent conic sections. We can represent all

types of conic sections but with NURBS circle arc construction becomes simpler. We choose

NURBS spline with degree 2, because conic sections are described by quadratic equations.

With three vertices 𝑉0𝑉1𝑉2 forming isosceles triangle and weights 𝑤0 = 𝑤2 = 1 and

𝑤1 = cos𝜃 where 𝜃 is angle between base and side of triangle 𝑉0𝑉1𝑉2. Obtained circular arc

subtend angle 2𝜃 of a full circle. This arc represents one segment of NURBS spline with open

knot vector 𝑈 = {0, 0, 0, 1, 1, 1}. Full circle is created by duplicating this procedure to obtain

for example three 120° or four 90° segments. (Figure 1-13)

Figure 1-13 Rational B-spline polynomials and NURBS spline of degree 𝑛 = 2 for knot vector

 𝑈 = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4} and weights 𝑤0 = {1, √2 2⁄ , 1, √2 2⁄ , 1, √2 2⁄ , 1, √2 2⁄ , 1}

1.4. Surfaces

“Surfaces are used in almost all branches of modern technologies. Shapes of things we

use every day like clothes, cell phones, cars and also buildings are usually designed using some

form of computer aided design. We can find analytical form for many surfaces, but these forms

often does not exist for more complex surfaces like airplane fuselage and car body.“ [2] Designers

create these from simpler surfaces – patches composed of points and curves. The patches are

joined together with different continuity conditions and called piecewise surfaces.

27

“A vector-valued parametric representation is used because it is axis independent, avoids

infinite slope values with respect to some arbitrary axis system, allows the unambiguous

representation of multivalued surfaces or space functions, facilitates the representation of surfaces

in homogeneous coordinates and is compatible with the use of the three-dimensional

homogeneous coordinate transformations.“ [2]

If we want to represent surface by parametric representation, we have to use two

parameters, 𝑢 and 𝑣. We call such surface bi-parametric and its equations are

𝑥 = 𝑥(𝑢, 𝑣), 𝑦 = 𝑦(𝑢, 𝑣), 𝑧 = 𝑧(𝑢. 𝑣)

where 𝑢, 𝑣 ∈ 𝑈 × 𝑉. If we fix value of 𝑢 or 𝑣, we obtain so-called 𝑣-isoparametric or

𝑢-isoparametric curves on the surface. If isoparametric curve has fixed parameter of maximum

(minimum) value, it forms edge of the surface. Fixing both parametric values results in a point

on the surface.

1.4.1. Swept surfaces

 “A swept surface is generated when a curve is parametrically translated or rotated.

In CAD, a surface is represented by series of curves, which are parametrically generated at various

instances.” [11]

While translating or rotating profile curve, we sample curve’s points position. Since both

rotation and translation are affine transformations, surface of this type is called an affine surface.

Here we will discuss surfaces of revolution and extruded surfaces.

1.4.1.1. Surfaces of revolution

 Assume a curve 𝑐(𝑢) = 𝐶0(𝑢) in space 𝐸3. If we rotate curve 𝐶0(𝑢) by angle 𝑣 ∈ 〈0,2𝜋〉

around axis of rotation and sample position of 𝐶0(𝑢) while rotating we obtain surface

of revolution. We add a condition for planar curve 𝐶0(𝑢) ⊂ 𝛼, plane 𝛼 cannot be perpendicular

to axis of rotation. 𝑢-isocurve is original curve rotated by an fixed angle 𝑣 and 𝑣-isocurve is

a parallel circle in plane 𝐶0(𝑢) ⊂ 𝛽 perpendicular to axis of rotation. We can use quaternions

to simplify rotating around arbitrary axis.

 “Quaternions are four vectors (this is why they were given this name), and inherit vector

operations including addition, scalar multiplication, dot product and norm, but their multiplication

is defined specially, in a way somehow similar to arithmetic of complex numbers, because

quaternions can also be interpreted as a generalization of the complex numbers with 𝑠 as the real

part and 𝑥, 𝑦, 𝑧 as the imaginary part. Denoting the imaginary axes by 𝑖, 𝑗 and 𝑘 yields:” [4]

𝑞 = 𝑠 ∙ 1 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 = [𝑠, 𝑥, 𝑦, 𝑧] = [𝑠, �⃗⃗�]

where 𝑞 is quaternion, �⃗⃗� is vector (𝑥, 𝑦, 𝑧) and basis elements 𝑖, 𝑗 and 𝑘 satisfy equations

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1

𝑖𝑗 = −𝑗𝑖 = 𝑘

𝑗𝑘 = −𝑘𝑗 = 𝑖

𝑘𝑖 = −𝑖𝑘 = 𝑗

28

Operation on quaternions are defined as in [4]

𝑞1 + 𝑞2 = [𝑠1,𝑤1⃗⃗ ⃗⃗]+ [𝑠2,𝑤2⃗⃗⃗⃗ ⃗] = [𝑠1 + 𝑠2,𝑤1⃗⃗ ⃗⃗ +𝑤2⃗⃗⃗⃗ ⃗]

𝜆𝑞 = 𝜆[𝑠, �⃗⃗�] = [𝜆𝑠, 𝜆�⃗⃗�]

𝑞1 ∙ 𝑞2 = [𝑠1,𝑤1⃗⃗ ⃗⃗] ∙ [𝑠2,𝑤2⃗⃗⃗⃗ ⃗] = [𝑠1𝑠2 −𝑤1⃗⃗ ⃗⃗ ∙𝑤2⃗⃗⃗⃗ ⃗, 𝑠1𝑤2⃗⃗⃗⃗ ⃗ + 𝑠2𝑤1⃗⃗ ⃗⃗ −𝑤1⃗⃗ ⃗⃗ ×𝑤2⃗⃗⃗⃗ ⃗]

〈𝑞1, 𝑞2〉 = 〈[𝑠1,𝑤1⃗⃗ ⃗⃗], [𝑠2,𝑤2⃗⃗⃗⃗ ⃗]〉 = 𝑠1𝑠2 +𝑤1⃗⃗ ⃗⃗ ∙𝑤2⃗⃗⃗⃗ ⃗

‖𝑞‖2 = √𝑠2 + 𝑥2 + 𝑦2 + 𝑧2

Inverse quaternion to quaternion 𝑞−1 is defined as

𝑞−1 =
[𝑠,−𝑤⃗⃗⃗⃗ ⃗⃗]

‖𝑞‖2

In order to rotate 3D vector 𝑎 around axis 𝑑 by an angle 𝛼 to new orientation �⃗� , we first

extend this vector by an 𝑠 = 0 to create a quaternion [0, �⃗�]. We use properties of quaternion

multiplication to obtain [0, �⃗�] by equation

[0, 𝑎] = 𝑞 ∙ [0, �⃗�] ∙ 𝑞−1, 𝑞 = [cos
𝛼

2
, sin

𝛼

2
∙ 𝑑]

 “Our ultimate objective is to move an object from an orientation represented by 𝑞1 to new

orientation of 𝑞2 by an even and uniform motion. If linear interpolation is used to generate

the path of orientations between 𝑞1 and 𝑞2, then the angles of the subsequent quaternions will not

be constant.” [4]

“Instead of linear interpolation, a non-linear interpolation must be found that guarantees

the constant angle between the subsequent interpolated quaternions. Spherical interpolation

obviously meets this requirement, where the interpolated quaternions are selected uniformly from

the arc between 𝑞1and 𝑞2. If 𝑞1and 𝑞2 are unit quaternions, then all the interpolated quaternions

will also be of unit length. Unit size quaternions can be regarded as unit-size four-vectors which

correspond to a 4D unit-radius sphere. An appropriate interpolation method must generate

the great arc between 𝑞1and 𝑞2, and as can easily be shown, this great arc has the following form:

𝑞(𝑡) =
sin(1 − 𝑡)𝜃

sin𝜃
∙ 𝑞1 +

sin 𝑡𝜃

sin𝜃
∙ 𝑞2

Where angle cos𝜃 = 〈𝑞1, 𝑞2〉. “ [4]

 Now we can express surface of revolution of 𝑐(𝑢) curve around axis 𝑑 by an angle 𝑣 as

[0, 𝑆(𝑢, 𝑣)] = 𝑞(𝑣) ∙ [0, 𝑐(𝑢)] ∙ 𝑞(𝑣)−1

where 𝑢, 𝑣 ∈ [𝑎, 𝑏]× [𝑟, 𝑠] ⊆ [𝑎, 𝑏]× [0, 2𝜋] and 𝑞(𝑣) is spherical interpolation between

quaternions 𝑞1 and 𝑞2 given by equations

𝑞1 = [cos
𝑟

2
, sin

𝑟

2
∙ �⃗�] , 𝑞2 = [cos

𝑠

2
, sin

𝑠

2
∙ �⃗�]

29

 Modelling of this kind of surface can be achieved by modifying shape of input curve,

changing axis and angle of rotation. (Figure 1-14)

Figure 1-14 Surface of revolution

1.4.1.2. Extruded surfaces

 Another type of affine surface is extruded surface. It is also called translational surface.

This time we move curve point on curve 𝐶0(𝑢) along another curve 𝐷0(𝑣). Curves 𝐶0(𝑢) and

𝐷0(𝑣) are defined on intervals [𝑎, 𝑏] and [𝑐, 𝑑] respectively.

𝑆(𝑢, 𝑣) = 𝐶0(𝑢) + (𝐷0(𝑣) − 𝐷0(𝑐))

𝑢-isocurve is translated curve 𝐶0(𝑢) and 𝑣-isocurve is translated curve 𝐷0(𝑣). (Figure 1-15)

Figure 1-15 Extruded surface

1.4.2. Coons patches

 This type of patch takes boundary curves and somehow interpolates them. We can divide

Coons patches into categories by number of input curves and the way they are blended to form

a patch. Changing shape of these surfaces is done by modifying boundary curves.

1.4.2.1. Ruled Coons patches

 We are given two curves in space, 𝐶0(𝑢) and 𝐶1(𝑢), defined on same interval 𝑢 ∈ [0, 1].

In order to create patch 𝑆(𝑢, 𝑣) we simply join corresponding points on curve with a line segment.

Thus each 𝑣-isocurve is a line segment and that is why it is called ruled or linear Coons patch.

We can write it down as in [1]

𝑆(𝑢, 𝑣) = 𝐶0(𝑢) + 𝑣(𝐶1(𝑢) − 𝐶0(𝑢))

30

for 𝑢, 𝑣 ∈ [0, 1] × [0, 1]. (Figure 1-16)

Figure 1-16 Linear Coons patch

1.4.2.2. Bilinear Coons patches

 Now we are given four curves in space, 𝐶0(𝑢), 𝐶1(𝑢) 𝐷0(𝑣) and 𝐷1(𝑣) defined on the

same interval 𝑢, 𝑣 ∈ [0, 1]. These curves must have common points in corners of patch (they must

“meet” in corners):

𝐶𝑖(𝑗) = 𝐷𝑗(𝑖) 𝑖, 𝑗 = 0,1

We call this 𝐶0 compatibility. Then we can define bilinear Coons patch as in [1]

𝑆(𝑢, 𝑣) = 𝑆𝑐(𝑢, 𝑣) + 𝑆𝐷(𝑢, 𝑣) − 𝑆𝐶𝐷(𝑢, 𝑣)

where

𝑆𝑐(𝑢, 𝑣) = (1 − 𝑣) 𝐶0(𝑢) + 𝑣𝐶1(𝑢)

𝑆𝐷(𝑢, 𝑣) = (1 − 𝑢) 𝐷0(𝑣) + 𝑢𝐷1(𝑣)

𝑆𝐶𝐷(𝑢, 𝑣) = (1 − 𝑢 𝑢) (
𝐶0(0) 𝐶0(1)

𝐶1(0) 𝐶1(1)
) (
1 − 𝑣
𝑣

)

for 𝑢, 𝑣 ∈ [0, 1] × [0, 1]. Sumand 𝑆𝐶𝐷(𝑢, 𝑣) is called bilinear interpolant of corner vertices.

(Figure 1-17)

Figure 1-17 Bilinear Coons patch

1.4.2.3. Partially bicubic Coons patches

 Blending functions used so far were linear, what can cause problems when joining two

linear Coons patches along edges. Therefore we can choose another blending functions, which

31

fulfil these conditions [1]: 𝑓1(𝑢) + 𝑓2(𝑢) = 1, 𝑔1(𝑣) + 𝑔2(𝑣) = 1, 𝑓1(0) = 𝑔1(0) = 1 and

𝑓2(1) = 𝑔2(1) = 0. In this work, we have chosen Hermite polynomials 𝐻0
3(𝑡) on the position

of 𝑓1(𝑢) and 𝑔1(𝑣) and 𝐻3
3(𝑡) on the position of 𝑓2(𝑢) and 𝑔2(𝑣). Now patch can be described

as

𝑆(𝑢, 𝑣) = 𝑆𝑐(𝑢, 𝑣) + 𝑆𝐷(𝑢, 𝑣) − 𝑆𝐶𝐷(𝑢, 𝑣)

where

𝑆𝑐(𝑢, 𝑣) = 𝐻0
3(𝑣) 𝐶0(𝑢) + 𝐻3

3(𝑣)𝐶1(𝑢)

𝑆𝐷(𝑢, 𝑣) = 𝐻0
3(𝑢)𝐷0(𝑣) + 𝐻3

3(𝑢)𝐷1(𝑣)

𝑆𝐶𝐷(𝑢, 𝑣) = (𝐻0
3(𝑢) 𝐻3

3(𝑢)) (
𝐶0(0) 𝐶0(1)

𝐶1(0) 𝐶1(1)
) (
𝐻0
3(𝑣)

𝐻3
3(𝑣)

)

for 𝑢, 𝑣 ∈ [0, 1] × [0, 1]. (Figure 1-18)

Figure 1-18 Partialy bicubic Coons patch

1.4.2.4. Bicubic Coons patch

 In this case each boundary curve is Hermite cubic curve and we use all four Hermite cubic

polynomials as blending functions. Curves have to be 𝐶0 compatible. Now we express patch

𝑆(𝑢, 𝑣) as in [10]

𝑆(𝑢, 𝑣) = [𝐻0
3(𝑢) 𝐻1

3(𝑢) 𝐻2
3(𝑢) 𝐻3

3(𝑢)]

[

 𝐶0(0) 𝐷0⃗⃗ ⃗⃗ (0)

𝐶0⃗⃗⃗⃗ (0) 𝑡00⃗⃗ ⃗⃗ ⃗

𝐷0⃗⃗ ⃗⃗ (1) 𝐶1(0)

𝑡10⃗⃗ ⃗⃗ ⃗ 𝐶1⃗⃗⃗⃗ (0)

𝐶0⃗⃗⃗⃗ (1) 𝑡01⃗⃗ ⃗⃗ ⃗

𝐶0(1) 𝐷1⃗⃗ ⃗⃗ (0)

𝑡11⃗⃗ ⃗⃗ ⃗ 𝐶1⃗⃗⃗⃗ (1)

𝐷1⃗⃗ ⃗⃗ (1) 𝐶1(1)]

[

𝐻0
3(𝑣)

𝐻1
3(𝑣)

𝐻2
3(𝑣)

𝐻3
3(𝑣)]

for 𝑢, 𝑣 ∈ [0, 1] × [0, 1]. (Figure 1-19)

32

Figure 1-19 Bicubic Coons patch

Isocurves for both parametric directions are cubic Hermite arcs. There are three types

of data in 4x4 matrix. First of them are corner vertices, next are tangent vectors in patch’s corner

points in 𝑢 and 𝑣 parametric direction, respectively and last one is composed of mixed derivatives

called twist vectors. They are zero vectors for Ferguson patch and non-zero for general bicubic

Coons patch. If they are not given, then there are many ways to derive them from boundary curves

in order to join patches to form a surface with 𝐶2 continuity.

 The simplest of them is to create bilinear patch, where corners are 𝐶0(0), 𝐶0(1), 𝐶1(0)

and 𝐶1(1) and boundary curves are line segments. Then twist vector are then defined as

𝑡𝑖𝑗⃗⃗⃗⃗ = (𝐶0(0) − 𝐶0(1)) + (𝐶1(1) − 𝐶1(0)), 𝑖, 𝑗 = 0,1

We can obtain twist vectors from Adini method [5]. In case of single patch, we create

bilinear Coons patch with boundary curves same as for bicubic. Now equation for twist vector is

𝑡𝑖𝑗⃗⃗⃗⃗ = (𝐷1⃗⃗ ⃗⃗ (𝑗) − 𝐷0⃗⃗ ⃗⃗ (𝑗)) + (𝐶1⃗⃗⃗⃗ (𝑖) − 𝐶0⃗⃗⃗⃗ (𝑖)) − (𝐶0(0) − 𝐶0(1)) + (𝐶1(1) − 𝐶1(0)), 𝑖, 𝑗 = 0,1

Another methods can be found in [3] and [5].

1.4.3. Tensor product surfaces

 “The product of a column vector and a row vector is an example of the mathematical

operation of tensor-product:

[

𝑎0
𝑎1
𝑎2
]⨂[𝑏0 𝑏1 𝑏2 𝑏3] = [

𝑎0𝑏0 𝑎0𝑏1
𝑎1𝑏0 𝑎1𝑏1
𝑎2𝑏0 𝑎2𝑏1

𝑎0𝑏2 𝑎0𝑏3
𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏2 𝑎2𝑏3

]

 A tensor-product surface 𝑆(𝑢, 𝑣) is one whose blending functions are products of pairs of

univariate blending functions:” [7]

𝑆(𝑢, 𝑣) =∑∑𝑃𝑖
𝑚(𝑢)𝑃𝑗

𝑛(𝑣)𝑉𝑖𝑗

𝑙

𝑗=0

𝑘

𝑖=0

=∑∑𝑆𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑙

𝑗=0

𝑘

𝑖=0

33

𝑆𝑖𝑗(𝑢, 𝑣) = 𝑃𝑖
𝑚(𝑢)𝑃𝑗

𝑛(𝑣)

where 𝑉𝑖𝑗, 𝑖 = 0,… , 𝑘, 𝑗 = 0,… , 𝑙 are control points, 𝑃𝑖
𝑚(𝑢), 𝑃𝑗

𝑛(𝑣) are univariate blending

functions of degree 𝑚 and 𝑛, respectively, and 𝑆𝑖𝑗(𝑢, 𝑣) is bivariate blending function

with degree 𝑚 and 𝑛 in respective parametric directions. Control points are organized

topologically into a rectangular array consisting of 𝑘 rows and 𝑙 columns. Two control points 𝑉𝑎𝑏

and 𝑉𝑐𝑑 are considered to be neighbours if |𝑎 − 𝑐| ≤ 1 and 𝑏 = 𝑑 or |𝑏 − 𝑑| ≤ 1 and 𝑎 = 𝑐.

Object formed by control vertices and all line segments, which are joining two neighbour points,

is called control net.

1.4.3.1. Tensor product Bézier surface

 For given control points 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 we define tensor product Bézier

surface 𝑆(𝑢, 𝑣) as in [9]

𝑆(𝑢, 𝑣) =∑∑𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

where 𝑢, 𝑣 ∈ [0, 1] × [0, 1], 𝑚 and 𝑛 are degrees of said patch in 𝑢 and 𝑣 respective parametric

directions and 𝐵𝑖
𝑚(𝑢) and 𝐵𝑖

𝑛(𝑣) are Bernstein polynomials of degree 𝑚 and 𝑛, respectively.

(Figure 1-20)

Figure 1-20 Tensor product Bézier patch

Properties of tensor product Bézier surface are similar to those of Bézier curve [9]:

 Bézier surface follows the shape of the control net 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛.

 Convex hull property: Due to

𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣) ≥ 0

∑∑𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)

𝑛

𝑗=0

𝑚

𝑖=0

= 1

for 𝑢, 𝑣 ∈ [0, 1] × [0, 1], surface points are located in the convex hull formed by control

net.

 Isocurves [10]: Isocurves for both parameters are Bézier arcs of degree 𝑚 and 𝑛,

respectively. 𝑢-isocurves and 𝑣-isocurves are obtained by equations

𝑆(𝑢, 𝑣∗) =∑𝐵𝑖
𝑛(𝑢)

𝑚

𝑖=0

∑𝐵𝑗
𝑛(𝑣∗)𝑉𝑖𝑗

𝑛

𝑗=0

34

𝑆(𝑢∗, 𝑣) =∑𝐵𝑗
𝑛(𝑣)

𝑛

𝑗=0

∑𝐵𝑖
𝑚(𝑢∗)𝑉𝑖𝑗

𝑚

𝑖=0

where 𝑢∗ and 𝑣∗ are fixed parameter, respectively. Especially all boundary curves are

obtained by evaluating 𝑆(𝑢, 0), 𝑆(𝑢, 1), 𝑆(0, 𝑣) and 𝑆(1, 𝑣). Control polygons for these

Bézier arcs are subsets of control net. Because of this, patch interpolates all four corner

control points.

 Invariance under parameter transformation:

∑∑𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

=∑∑𝐵𝑖
𝑚 (

𝑠 − 𝑎

𝑏 − 𝑎
)𝐵𝑗

𝑛 (
𝑡 − 𝑐

𝑑 − 𝑐
)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

where 𝑢, 𝑣 ∈ [0, 1] × [0, 1] and 𝑠, 𝑡 ∈ (𝑎, 𝑏) × (𝑐, 𝑑).

 Pseudo local control: As with Bézier arc, tensor product Bézier surface cannot be locally

modified. Change of position of point 𝑉𝑖𝑗 deforms the whole patch and the largest

deviation occurs at 𝑢 = 𝑖 𝑚⁄ and 𝑣 = 𝑗 𝑛⁄ .

 Invariance under affine transformation:

𝑇(𝑆(𝑢, 𝑣)) = 𝑇(∑∑𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

) = ∑∑𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑇(𝑉𝑖𝑗)

𝑛

𝑗=0

𝑛

𝑖=0

where 𝑇 is an affine transformation.

 Partial derivative [10]: We define partial derivatives by equation

𝛿𝑘+𝑙𝑆(𝑢, 𝑣)

𝛿𝑢𝑘𝛿𝑣𝑙
= 𝑚…(𝑚 − 𝑘 + 1)𝑛… . (𝑛 − 𝑙 + 1) ∑ 𝐵𝑖

𝑚−𝑘(𝑢)∑𝐵𝑗
𝑛−𝑙(𝑣)

𝑛−𝑙

𝑗=0

𝑚−𝑘

𝑖=0

∆𝑘,𝑙 𝑉𝑖𝑗

Where ∆𝑘,𝑙 𝑉𝑖𝑗 is a vector defined recursively by following relations

∆0,0 𝑉𝑖𝑗 = 𝑉𝑖𝑗

∆1,0 𝑉𝑖𝑗 = 𝑉𝑖+1𝑗 − 𝑉𝑖𝑗

∆0,1 𝑉𝑖𝑗 = 𝑉𝑖𝑗+1 − 𝑉𝑖𝑗

∆𝑘,𝑙 𝑉𝑖𝑗 = ∆
1,0 (∆𝑘−1,𝑙 𝑉𝑖𝑗), 𝑘 > 0

∆𝑘,𝑙 𝑉𝑖𝑗 = ∆
0,1 (∆𝑘,𝑙−1 𝑉𝑖𝑗), 𝑙 > 0

 Degree elevation and reduction [10]: We can use similar algorithms as for curves. First

one difference is that we have to specify degree to be elevated or decreased and second

one is that we have to use Bézier arc degree elevation for each row (column) of control

vertices.

35

 Variation diminishing property: “The surface does not exhibit the variation-diminishing

property. The variation-diminishing property for bivariant surfaces is both undefined and

unknown.” [2]

 Enumerating tensor product Bézier surface can be done in two ways. First of them is to

use de Casteljau algorithm for one fixed parameter, thus creating set of Bézier arcs for second

parameter and then fixing second parameter and use de Casteljau algorithm for obtained points.

 Second one is to use bilinear interpolation [10]. Let

𝑏𝑖𝑗
0 (𝑢, 𝑣) = 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛

We define 𝑏𝑖𝑗
𝑙 (𝑢, 𝑣) as

𝑏𝑖𝑗
𝑙 (𝑢, 𝑣) = (1 − 𝑣) ((1 − 𝑢)𝑏𝑖𝑗

𝑙−1(𝑢, 𝑣) + 𝑢𝑏𝑖+1𝑗
𝑙−1 (𝑢, 𝑣))

+ 𝑣 ((1 − 𝑢)𝑏𝑖𝑗+1
𝑙−1 (𝑢, 𝑣) + 𝑢𝑏𝑖+1𝑗+1

𝑙−1 (𝑢, 𝑣))

for 𝑙 = 1,… ,min(𝑚, 𝑛) , 𝑖 = 0,… ,𝑚 − 𝑙 and 𝑗 = 0,… , 𝑛 − 𝑙. If 𝑚 = 𝑛 then the result is point

on patch

𝑏00
𝑚 (𝑢, 𝑣) = 𝑆(𝑢, 𝑣)

If this is not the case, then we are left with |𝑚 − 𝑛| + 1 points. We use de Casteljau algorithm

with these points as input and parameter, in which direction surface has higher degree, to calculate

point on patch.

 Only way to change shape of patch is to change position of control vertices.

1.4.3.2. Tensor product B-spline surface

 We can apply the same idea for creating patch from B-spline curves. Patch is defined as

in [2]

𝑆(𝑢, 𝑣) =∑∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

Where 𝑢, 𝑣 ∈ [𝑢𝑘 , 𝑢𝑚+1) × [𝑢𝑙 , 𝑢𝑛+1), 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 are control vertices, 𝑈 =

 {𝑢𝑖}𝑖=0
𝑚+𝑘+1 and 𝑉 = {𝑣𝑖}𝑖=0

𝑛+𝑙+1 are knot vectors with maximum possible knot multiplicity of 𝑚 +

1 and 𝑛 + 1, respectively, and 𝑁𝑖
𝑘(𝑈, 𝑢) and 𝑁𝑗

𝑙(𝑉, 𝑣) are B-Spline basis functions of degree 𝑘

and 𝑙, respectively. (Figure 1-21)

36

Figure 1-21 Tensor product B-spline patch

 “Because the B-spline basis is used both to describe the boundary curves and to blend the interior

of the surface, several properties of the B-spline surface are immediately known:” [2]

 B-spline surface follows the shape of the control net 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛.

 Surface domain is 𝑢, 𝑣 ∈ [𝑢𝑘 , 𝑢𝑚−𝑘) × [𝑢𝑙 , 𝑢𝑛−𝑙).

 Local modelling: Patch segment corresponding to interval 𝑢, 𝑣 ∈ [𝑢𝑖, 𝑢𝑖+1) × [𝑢𝑗, 𝑢𝑗+1)

for 𝑘 ≤ 𝑖 ≤ 𝑚 − 𝑘 − 1, 𝑙 ≤ 𝑗 ≤ 𝑛 − 𝑙 − 1 is designated by (𝑘 + 1) ∙ (𝑙 + 1) control

vertices 𝑉𝑖−𝑘𝑗−𝑙 , … , 𝑉𝑖𝑗.

 Convex hull property: Every point of patch is enclosed inside the convex hull formed by

control net because

𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣) ≥ 0

∑∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣)

𝑛

𝑗=0

𝑚

𝑖=0

= 1

for 𝑢, 𝑣 ∈ [𝑢𝑘 , 𝑢𝑚+1) × [𝑢𝑙 , 𝑢𝑛+1).

 Isocurves: 𝑢-isocurves and 𝑣-isocurves are obtained by equations

𝑆(𝑢, 𝑣∗) =∑𝑁𝑖
𝑘(𝑈, 𝑢)

𝑚

𝑖=0

∑𝑁𝑗
𝑙(𝑉, 𝑣∗)𝑉𝑖𝑗

𝑛

𝑗=0

𝑆(𝑢∗, 𝑣) =∑𝑁𝑗
𝑙(𝑉, 𝑣)

𝑛

𝑗=0

∑𝑁𝑖
𝑘(𝑈, 𝑢∗)𝑉𝑖𝑗

𝑚

𝑖=0

where 𝑣∗ and 𝑢∗ are fixed parameter, respectively, hence isocurves are B-spline curves

of degree 𝑘 and 𝑙, respectively. Boundary curves can be obtained by evaluating

𝑆(𝑢, 0), 𝑆(𝑢, 1), 𝑆(0, 𝑣) and 𝑆(1, 𝑣). Subset of control net is control polygon for these

curves.

 Invariance under affine transformation:

𝑇(𝑆(𝑢, 𝑣)) = 𝑇(∑∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣)

𝑛

𝑗=0

𝑚

𝑖=0

𝑉𝑖𝑗) = ∑∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣)𝑇(𝑉𝑖𝑗)

𝑛

𝑗=0

𝑚

𝑖=0

where 𝑇 is an affine transformation.

 Partial derivative [9]: We define partial derivatives by equation

37

𝛿𝑝+𝑞𝑆(𝑢, 𝑣)

𝛿𝑢𝑝𝛿𝑣𝑞
= 𝑚…(𝑚 − 𝑝 + 1)𝑛… . (𝑛 − 𝑞 + 1)∑𝑁𝑖

𝑘−𝑝(𝑈, 𝑢)∑𝑁𝑗
𝑙−𝑞(𝑉, 𝑣)

𝑙−𝑞

𝑗=0

𝑘−𝑝

𝑖=0

∆𝑝,𝑞 𝑉𝑖𝑗

where ∆𝑝,𝑞 𝑉𝑖𝑗 is vector defined recursively by following relations

∆0,0 𝑉𝑖𝑗 = 𝑉𝑖𝑗

∆1,0 𝑉𝑖𝑗 =
𝑉𝑖+1𝑗 − 𝑉𝑖𝑗

𝑢𝑖+𝑘+1 − 𝑢𝑖+1

∆0,1 𝑉𝑖𝑗 =
𝑉𝑖𝑗+1 − 𝑉𝑖𝑗

𝑣𝑖+𝑙+1 − 𝑣𝑖+1

∆𝑝,𝑞 𝑉𝑖𝑗 = ∆
1,0 (∆𝑝−1,𝑞 𝑉𝑖𝑗) =

∆𝑝−1,𝑞 𝑉𝑖+1𝑗 − ∆
𝑝−1,𝑞 𝑉𝑖𝑗

𝑢𝑖+𝑘+1 − 𝑢𝑖+𝑝
, 𝑝 > 0

∆𝑝,𝑞 𝑉𝑖𝑗 = ∆
0,1 (∆𝑝,𝑞−1 𝑉𝑖𝑗) =

∆𝑝,𝑞−1 𝑉𝑖𝑗+1 − ∆
𝑝,𝑞−1 𝑉𝑖𝑗

𝑣𝑖+𝑙+1 − 𝑣𝑖+𝑞
, 𝑞 > 0

 Variation diminishing property: “The variation-diminishing property for bivariate

surfaces is both undefined and unknown.” [2]

Boehm’s algorithm for knot insertion and knot removal algorithm can be both easily

modified for patch. We need to determine which knot vector will be changed, then increase or

decrease number of control points in given parametric direction and lastly compute new control

points for each row (column) of control vertices.

 Enumeration of tensor product B-spline patch is basically modified de Boor algorithm.

First we evaluate de Boor algorithm multiple times for each row or column, depending on chosen

parametric direction, of control vertices for first parameter. Obtained points are now used for one

more de Boor algorithm but now for second parametric direction. Result is point on patch.

1.4.4. Rational surfaces

 Tensor product surfaces described so far have been integral surfaces. A rational surface

𝑆(𝑢, 𝑣) is defined as a central projection of integral surface 𝑆𝑤(𝑢, 𝑣) to the hyperplane 𝑊 = 1.

𝑆𝑤(𝑢, 𝑣) = 𝑆̅(𝑢, 𝑣) = ∑∑𝑃𝑖
𝑚(𝑢)𝑃𝑗

𝑛(𝑣)𝑉𝑖𝑗
𝑤

𝑙

𝑗=0

𝑘

𝑖=0

where 𝑉𝑖𝑗
𝑤 = (𝑤𝑖𝑗𝑋𝑖𝑗 , 𝑤𝑖𝑗𝑌𝑖𝑗 , 𝑤𝑖𝑗𝑍𝑖𝑗 , 𝑤𝑖𝑗), 𝑖 = 0,… , 𝑘, 𝑗 = 0,… , 𝑙 are control points, 𝑃𝑖

𝑚(𝑢) and

𝑃𝑖
𝑛(𝑣) are univariate blending functions of degree 𝑚 and 𝑛, respectively. We can express 𝑆(𝑢, 𝑣)

as

𝑆(𝑢, 𝑣) =
�̅�(𝑢, 𝑣)

𝑊(𝑢, 𝑣)
=
∑ ∑ 𝑃𝑖

𝑚(𝑢)𝑃𝑗
𝑛(𝑣)𝑤𝑖𝑗𝑉𝑖𝑗

𝑙
𝑗=0

𝑘
𝑖=0

∑ ∑ 𝑃𝑠
𝑚(𝑢)𝑃𝑡

𝑛(𝑣)𝑤𝑠𝑡
𝑙
𝑡=0

𝑘
𝑠=0

=∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑙

𝑗=0

𝑘

𝑖=0

38

𝑅𝑖𝑗(𝑢, 𝑣) =
𝑃𝑖
𝑚(𝑢)𝑃𝑗

𝑛(𝑣)𝑤𝑖𝑗

∑ ∑ 𝑃𝑠
𝑚(𝑢)𝑃𝑡

𝑛(𝑣)𝑤𝑠𝑡
𝑙
𝑡=0

𝑘
𝑠=0

where the 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 are control points, 𝑤𝑖𝑗 ≥ 0 are their weights,

𝑃𝑖
𝑚(𝑢), 𝑃𝑖

𝑛(𝑣) are univariate blending functions of degree 𝑚 and 𝑛 and 𝑅𝑖𝑗(𝑢, 𝑣) is bivariate

blending function with degree 𝑚 and 𝑛 in respective parametric directions. Because each

𝑅𝑖𝑗(𝑢, 𝑣) is rational polynomial we call this kind of surface rational one.

1.4.4.1. Rational Bézier surface

 Rational Bézier surface is defined by equation as in [5]

𝑆(𝑢, 𝑣) =
∑ ∑ 𝐵𝑖

𝑚(𝑢)𝐵𝑗
𝑛(𝑣)𝑤𝑖𝑗𝑉𝑖𝑗

𝑛
𝑗=0

𝑚
𝑖=0

∑ ∑ 𝐵𝑠
𝑚(𝑢)𝐵𝑡

𝑛(𝑣)𝑛
𝑡=0

𝑚
𝑠=0 𝑤𝑠𝑡

=∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

𝑅𝑖𝑗(𝑢, 𝑣) =
𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑤𝑖𝑗

∑ ∑ 𝐵𝑠
𝑚(𝑢)𝐵𝑡

𝑛(𝑣)𝑛
𝑡=0

𝑚
𝑠=0 𝑤𝑠𝑡

where 𝑢, 𝑣 ∈ [0, 1] × [0, 1], 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚 and 𝑗 = 0,… , 𝑛, are control vertices, 𝑤𝑖𝑗 ≥ 0 are

their weights, 𝑚 and 𝑛 are degrees of said patch in 𝑢 and 𝑣 parametric direction, 𝐵𝑖
𝑚(𝑢), 𝐵𝑖

𝑛(𝑣)

are Bernstein polynomials of degree 𝑚 and 𝑛, respectively, and 𝑅𝑖𝑗(𝑢, 𝑣) is bivariate blending

function with degree 𝑚 and 𝑛 in respective parametric directions.

Properties of this kind of patch are the same as those of integral Bézier surface apart from these

[9]:

 Convex hull property: If 𝑤𝑖𝑗 ≥ 0, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 then every patch point lies

in the convex hull formed by control net.

 Invariance under projective transformation:

𝑃(𝑆(𝑢, 𝑣)) = 𝑃 (∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

) = ∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑃(𝑉𝑖𝑗)

𝑛

𝑗=0

𝑚

𝑖=0

where 𝑃 is an projective transformation. This is stronger condition than invariance under

affine transformation [3].

 Operations of degree elevation and reduction are same as for integral Bézier surface,

but they need to work with expanded affine coordinates of control points.

Enumeration of a rational Bézier patch can be done via de Casteljau algorithm or with bilinear

interpolation. As with all algorithms for enumeration of rational curves and surfaces, we can either

project each intermediate result to hyperplane 𝑊 = 1 or project only final vertex to said

hyperplane.

39

1.4.4.2. Rational B-spline Surface - NURBS

 “Rational B-spline surfaces, or NURBS, are the standard for surface modelling in much

of computer graphics and computer aided design. Many of the typical surface forms used

in computer graphics and computer aided design, such as flat planes and quadric surfaces, e.g.,

cylinders, spheres, ellipsoids of revolution, as well as more complex fully sculptured surfaces, are

easily and accurately represented by rational B-spline surfaces. Thus, a single surface description,

with excellent local and global control, can be used in a modeller or computer aided design system

rather than having to deal with multiple types of surface descriptions.” [2]

 We define NURBS – non-uniform rational B-spline surface as in [2]

𝑆(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖

𝑘(𝑈, 𝑢)𝑁𝑗
𝑙(𝑉, 𝑣)𝑤𝑖𝑗𝑉𝑖𝑗

𝑛
𝑗=0

𝑚
𝑖=0

∑ ∑ 𝑁𝑠
𝑘(𝑈, 𝑢)𝑁𝑡

𝑙(𝑉, 𝑣)𝑛
𝑡=0

𝑚
𝑠=0 𝑤𝑠𝑡

=∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

𝑅𝑖𝑗(𝑢, 𝑣) =
𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣)𝑤𝑖𝑗

∑ ∑ 𝑁𝑠
𝑘(𝑈, 𝑢)𝑁𝑡

𝑙(𝑉, 𝑣)𝑛
𝑡=0

𝑚
𝑠=0 𝑤𝑠𝑡

where 𝑢, 𝑣 ∈ [𝑢𝑘, 𝑢𝑚+1) × [𝑢𝑙 , 𝑢𝑛+1), 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 are control vertices, 𝑤𝑖𝑗 ≥ 0

are their weights, 𝑈 = {𝑢𝑖}𝑖=0
𝑚+𝑘+1 and 𝑉 = {𝑣𝑖}𝑖=0

𝑛+𝑙+1 are knot vectors with maximum possible

knot multiplicity of 𝑚 + 1 and 𝑛 + 1, respectively and 𝑁𝑖
𝑘(𝑈, 𝑢) and 𝑁𝑗

𝑙(𝑉, 𝑣) are B-Spline basis

functions of degree 𝑘 and 𝑙, respectively.

 Properties of this patch are same as properties of integral B-spline surface, apart

from following [2]:

 Convex hull property: If 𝑤𝑖𝑗 ≥ 0, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 then all patch point are

contained in the convex hull formed by control net.

 Invariance under projective transformation:

𝑃(𝑆(𝑢, 𝑣)) = 𝑃 (∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

) = ∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑃(𝑉𝑖𝑗)

𝑛

𝑗=0

𝑚

𝑖=0

where 𝑃 is an projective transformation.

 Knot insertion, knot removal and evaluation process are the same as for tensor B-spline

surface, but they use homogenous coordinates of control points.

Modified de Boor algorithm can be used for enumeration of NURBS patch. Algorithm

works with homogenous coordinates and can either project each intermediate results

to hyperplane 𝑊 = 1 or do it only for last one – point on patch.

40

2. Chapter – Specification
 This chapter defines requirements and specification of software application.

2.1. Goal

Main purpose of this application is visualization of various types of curves (arcs and

splines) and surfaces and in some cases also blending functions. User input consists of mainly

mouse events and keyboard. User can modify various parameters for curves, splines and

surfaces and to some degree also control 3D environment.

 Application’s name is Splines & Surfaces (Figure 2-1). It has to be compatible with

32-bit Windows XP, 64-bit Windows 7 and newer versions. Programming language chosen

for this application is C++ and development environment Microsoft Visual Studio 2012.

Application has appearance of Windows forms and uses OpenGL library to display 3D graphic

objects created from user’s input. (Figure 2-2)

Figure 2-1 Logo

Splines

&

Surfaces

User

User’s input: Control points,

parameters, desired object

Display enumerated

arc, spline or surface

Figure 2-2 Context diagram

41

2.2. Design and controls

 Application has a menu strip, which provides access to groups of functions. First of them

is focused on resetting application, saving current object, loading pre-created object or exit

application. Next one covers scene, curve and patch options. Last three groups are used to create

object form input. They are composed of arcs, splines and surfaces tab, each having multiple

choices to choose from. All of them are described further below.

Directly under menu strip buttons with icons are located. These provide accelerated

access to functions: New file, save, load, resetting view, top view and all curves and surfaces.

Functions for save and load file include dialog, where user can choose location and name of file.

If cursor hovers above one of these icons, tool tip with description of selected function

is displayed.

 The largest part of main window is occupied by OpenGL viewport. Here all 3D graphic

objects are displayed. Smaller auxiliary window is used to show blending functions. Elements

to control parameters of arc, spline and surface are located below. This form is resizable.

 Another window form serves as modifier of display settings. Secondary colour for spline,

colour for surface, number of cells for grid, line, curve, patch line width, curve and surface

precision can be changed here along with patch display mode. It also offers option to show or

hide control vertices, control polygon, grid, coordinate axes, isocurves or point on an object,

additional points illustrating enumeration and options to enable point or line smoothing. User can

choose between orthographic and perspective projection. Secondary colour for splines and colour

for surface can be set via colour dialog. Splines’ secondary colour is used for each odd segment

to better illustrate segments.

 Application has a separate window form to handle operations on knot vector. User can

choose whether to modify 𝑈 or 𝑉 knot vector and type of operation. User can choose knot’s index

and value. Options include setting up open and universal knot vector, changing value of a single

knot, increasing its multiplicity or inserting and removing knot with given value.

 One more window form is used to specify control point. If offers choice whether selected

control point will be modified or new control point will be added to sequence. It is also possible

to change only selected attributes of control point.

In case of curves and splines, user defines control points (actual points or tangents)

by first left mouse click to set 𝑥 and 𝑦 coordinate. Next mouse click sets 𝑧 coordinate to zero if

right mouse button is pressed down or to cursor position in case of left button click. If 𝑧 coordinate

is set and now right mouse button is pressed, sequence of control points is complete. In case

of surfaces, application itself constructs control points and user can only modify them later.

Control net for Bézier and B-spline patches can be initialized either with all points in a same

plane, elevated with 𝑧 coordinate on an arc or random. Number of points in both parametric

directions can be changed and scale of control net’s actual size is controllable.

To create curve or surface user chooses object type from menu or clicks on button with

icon and application then enumerates chosen curve or surface and displays it inside OpenGL

viewport. User can change values of parameters modifying shape of curve via numeric boxes.

Spline type can be chosen from a list. For some objects blending functions are drawn in auxiliary

window. Each segment of spline is drawn with alternating colour. This colour can be changed in

42

display settings. In case of curve, point corresponding to highlight parameter is highlighted and

in case of patches it is also highlighted, and isocurves for given highlight parameter are drawn

with different colour.

 If user wants to change position of any control points, he has to first select a control point.

He has to hover mouse cursor around that point and if it is close enough, chosen point is

highlighted. Then he can press left mouse button and sets up new coordinates by the same way as

in case of a new point, but pressing right mouse button causes that point’s 𝑥 and 𝑦 coordinate will

not change. During either creating new point or moving existing one, mouse cursor creates virtual

point. Application shows coordinates of this virtual point.

 If application is not in state of defining new point, either 𝑥 and 𝑦 or 𝑧 coordinate, pressing

down right mouse button while inside OpenGL viewport opens context menu with options to add

new point either at the end or begging of already defined sequence of control points, to specify

vertex (opens new window form), to delete selected control point, to change multiplicity or weight

of control point or to check one of these values.

 In case of surfaces that require formal expressions, user can enter them into text boxes.

Text boxes are labelled according to their purpose and if user hovers mouse cursors above any

text box, tool tip with description of input for selected text box appears. Generally, expressions

for curves have to define points in space, so each of them must contain separate expressions for

𝑥, 𝑦 and 𝑧 coordinate. Intervals for 𝑢, 𝑣 (for given expressions) and rotation and consist of two

separate numbers each. Text box that defines axis of rotation contains three separate numbers.

 User can zoom in and out using mouse wheel and rotate view

by pressing left mouse button while no point is selected in OpenGL viewport. Pressing arrows

causes view to move in desired direction. View rotation is controlled by mouse move and new

viewing angle can be accepted by pressing left mouse button once more or by pressing the right

mouse button.

 Blending functions are displayed in auxiliary window. If spline or patch uses knot vectors,

actual knots are shown. User can choose between 𝑈 or 𝑉 knot vector and two operations. First

one serves for knot value modification. User selects a knot by left mouse click in vicinity of that

knot and by next left click defines new value for that knot. Second operation is intended for

defining highlight parameter by left mouse click. In order to show form with knot vector options,

user have to make right mouse click inside this window.

 Application shows error message box every time an error is detected while initializing or

working with graphic object. All those error are listed on the pageList 1 Error messages 79.

Besides these, application also forbids action if it is not suitable or would cause an error (e.g.

deleting point via context menu when no points is selected). Should any event like this happen,

message box with error description is shown.

 The User input for 3D window is summed up in the table of uses cases on the page 76.

2.3. Data model

 Each control points is stored with its 𝑥, 𝑦, 𝑧 coordinates, weight and multiplicity. Same

structure is used for points on curve or patch. Objects are divided to two main categories, arcs or

43

splines and patches. Both of these classes share basic functions (setting control points, precision,

highlight parameter, etc.) and have same output format.

2.3.1. Arcs and splines

Firstly we describe arcs and splines. Input for their evaluation consists of sequence

of control points highlight parameter and curve precision, but it can also include other parameters

(only these differences are mentioned below). The highlight parameter represents parametric

value. If any control point has multiplicity greater than one, application creates new control point

with same coordinates and it is added into sequence just behind said control point. Output is the

same across all classes. It is sequence of points and each segment has assigned same number of

points as defined precision (arcs / curves consists of only one segment). Point on arc or spline that

corresponds to the value of highlight parameter is labelled, so it can be highlighted later on during

visualization. As part of output, blending functions are calculated and displayed in auxiliary

window.

Types of supported curves are:

1. Parametric curve

We evaluate coordinate functions for all three coordinates (defined in 4-th text box).

Input: Three coordinate functions (not sequence of points as all other curves)

Errors: Curve is degenerated to a single point.

2. Bézier arc

We evaluate integral Bézier arc using de Casteljau algorithm. De Casteljau algorithm can be

illustrated for given parameter.

Input: No difference.

Errors:Input consists of only 0 or 1 vertex.

Methods: Degree elevation – raises degree of Bézier arc (and computes new control vertices).

Degree reduction – decreases degree of Bézier arc (and computes new control vertices).

3. Rational Bézier arc

We evaluate rational Bézier arc using de Casteljau algorithm. De Casteljau algorithm can be

illustrated for given parameter.

Input: No difference.

Errors: Input consists of only 0 or 1 vertex.

Methods: Degree elevation – raises degree of rational Bézier arc (and computes new control

vertices).

Degree reduction – decreases degree of rational Bézier arc (and computes new control vertices).

4. Cubic Hermite arc

We construct two tangents from input control vertices and then evaluate cubic Hermite arc.

Input: Sequence of 4 control points.

Errors: Input consists of less than 4 vertices.

5. Quintic Hermite arc

We construct two tangents and two second derivatives vectors from input control vertices and

then evaluate quintic Hermite arc.

Input: Sequence of 6 control points.

44

Errors: Input consists of less than 6 vertices.

6. Hermite spline

First we compute tangents at control points according to end conditions (spline type). Then we

evaluate Hermite spline. Computed tangents can be illustrated.

Input: End condition (spline type), tangents.

Errors: Input consists of less than 3 vertices. Incompatible end conditions (spline type).

7. Cardinal spline

First we compute new control points according to end condition (spline type). Then we

evaluate Cardinal spline with respect to parameter 𝑠.

Input: Parameter 𝑠, end condition (spline type), tangents.

Errors: Input consists of less than 4 vertices. Incompatible end conditions (spline type).

8. Bézier spline

First we compute new control points according to type of spline. Then we use de Casteljau

for each segment of integral cubic Bézier spline. In the case of approximation spline, control

points for each segments, and in the case of interpolation spline 𝐷𝑖 can be shown.

Input: Type of spline, tangents

Errors: Input consists of less than 3 vertices.

9. Rational Bézier spline

First we compute new control points according to type of spline. Then we use de Casteljau

for each segment of rational cubic Bézier spline. In the case of approximation spline, control

points for each segments, and in the case of interpolation spline 𝐷𝑖 can be shown.

Input: Type of spline, tangents

Errors: Input consists of less than 3 vertices.

10. Beta spline

First we compute new control points according to end condition (spline type). Then we

evaluate Beta spline with respect to 𝛽1 and 𝛽2.

Input: Parameter 𝛽1, parameter 𝛽2, end condition (spline type), tangents.

Errors: Input consists of less than 4 vertices. Incompatible end conditions (spline type).

11. B-spline

Depending on type of knot vector, we either create uniform or open knot vector. In the case

of user defined vector we check this vector for size, knot multiplicity and property of non-

decreasing sequence. We solve any of these problems. Then we use de Boor algorithm for

evaluation of point on B-spline. This algorithm can be illustrated for given parameter.

Input: Knot vector, type of knot vector, degree.

Errors: Input consists of less vertices than value of degree + 1. Enumeration interval is empty.

Methods: Knot insertion – inserts new knot value into knot vector (and computes new control

vertices). Knot removal – removes knot value from knot vector (and computes new control

vertices) using Boehm’s algorithm.

12. Rational B-spline - NURBS

45

Depending on type of knot vector, we either create uniform or open knot vector. In the case

of user defined vector we check this vector for size, knot multiplicity and property of non-

decreasing sequence. We solve any of these problems. Then we use de Boor algorithm

for evaluation of point on rational B-spline. This algorithm can be illustrated for given parameter.

Input: Knot vector, type of knot vector, degree.

Errors: Input consists of less vertices than value of degree + 1. Enumeration interval is empty.

Methods: Knot insertion – inserts new knot value into knot vector (and computes new control

vertices). Knot removal – removes knot value from knot vector (and computes new control

vertices) using Boehm’s algorithm.

2.3.2. Patches

Secondly we describe patches. Again, input consists of few common arguments – two

dimensional array of control vertices forming control net, highlight parameter (now two

dimensional) and patch precision. Any differences will be mentioned below as before. Each one

of classes have same output. It is two dimensional array of patch points and number of points

in both dimensions equals to defined precision. Point on patch that corresponds to highlight

parameter is labelled, so it can be highlighted later on during visualization.

Types of supported patches:

1. Parametric surface

We evaluate coordinate functions for all three coordinates (defined in 9-th, 10-th and 11-th

text box).

Input: Three coordinate functions (not sequence of points as in case of all other surfaces)

Errors: Surface is degenerated to a single point (empty enumeration interval or 9-th, 10-th and

11-th text box defines only one points).

2. Extruded surface

Function evaluates extruded surface. All points of the first curve are translated by vector

defined by second curve.

Input: Two dimensional array of points, which are on two curves (defined via 5-th and 7-th text

box or one is modelled by user using curve modelling tools and one defined via 7-th text box),

domain for these text box definitions (two numbers in 1-st text box and 2-nd text box).

Errors: At least one curve is degenerated to a single point (empty enumeration interval or 5-th

and 7-th text box defines only two points).

3. Surface of revolution

Function evaluates surface of revolution by rotating curve around axis with respect to given

angle.

Input: Sequence of points, which are on curve (defined via 5-th text box or is created by user

using curve modelling tools), domain for this text box definition (two numbers in 1-st text box),

interval of revolution (two numbers in 3-rd text box), axis of rotation (3 numbers in 4-th text box).

Errors: Whole curve is in plane perpendicular to rotation axis. Interval for revolution is empty.

Curve is degenerated to a single point (empty enumeration interval or 5-th text box defines only

one point).

4. Linear Coons patch

Function evaluates linear Coons patch. Displays blending functions.

46

Input: Two dimensional array of points, which are on two boundary curves (defined via 5-th and

6-th text box), domain for these text box definitions (two numbers in 1-st text box).

Errors: Both curves are degenerated to a single point (empty enumeration interval or 5-th and 6-

th text box defines only one point each).

5. Bilinear Coons patch

Function evaluates bilinear Coons patch. Displays blending functions.

Input: Two dimensional array of points, which are on four boundary curves (defined via 5-th

 to 8-th text boxes), domain for these text box definitions (two numbers in 1-st and 2-nd text box).

Errors: Both boundary curves for 𝑢 and/or 𝑣 parametric direction are degenerated to a single

point (empty enumeration interval or at least one pair of text boxes define only one point each).

Boundary curves do not fulfil 𝐶0 compatibility.

6. Partially bicubic Coons patch

Function evaluates bilinear Coons patch. Displays blending functions.

Input: Two dimensional array of points, which are on four boundary curves (defined via 5-th

to 8-th text boxes), domain for these text box definitions (two numbers in 1-st and 2-nd text box).

Errors: Both boundary curves for 𝑢 and/or 𝑣 parametric direction are degenerated to a single

point (empty enumeration interval or at least one pair of text boxes define only one point each).

Boundary curves (points on them) do not fulfil 𝐶0 compatibility.

7. Bicubic Coons patch

Function evaluates bicubic Coons patch. When it is initialised, control points are organised in

a square with selectable size. Displays blending functions.

Input: Two dimensional array of points, which consists of 4 control points, 8 tangents both for 𝑢

and 𝑣 parametric direction and 4 twist vectors. Method for computing twist vectors.

8. Bézier patch

We evaluate Bézier patch using bilinear interpolation. Blending functions are calculated and

displayed in auxiliary window. When it is initialised, control points are organised in a square with

selectable size and have 𝑧 coordinate either set to 0, random value or points lie on half sphere.

Displays blending functions.

Input: No difference.

Methods: Degree elevation – raises degree of Bézier patch in given parametric direction (and

computes new control vertices). Degree reduction – decreases degree of Bézier patch in given

parametric direction (and computes new control vertices).

9. Rational Bézier patch

We evaluate rational Bézier patch using bilinear interpolation. Blending functions are

calculated and displayed in auxiliary window. When it is initialised, control points are organised

in square with selectable size and have 𝑧 coordinate either set to 0, random value or points lie on

half sphere. Displays blending functions.

Input: No difference.

Errors: Input consists of less than 3 non-collinear vertices with non-zero weight or all points with

non-zero weights are in the same row or column.

Methods: Degree elevation – raises degree of Bézier patch in given parametric direction (and

computes new control vertices). Degree reduction – decreases degree of Bézier patch in given

parametric direction (and computes new control vertices).

47

10. B-spline patch

Depending on type of knot vectors, we either create uniform or open knot vectors. In the case

of user defined vector we check this vector for size, knot multiplicity and property of non-

decreasing sequence. We solve any of these problems. Then we use de Boor algorithm

for evaluation of point on B-spline surface. Blending functions are calculated and displayed

in auxiliary window. When it is initialised, control points are organised in square with selectable

size and have 𝑧 coordinate either set to 0, random value or points lie on half sphere. Displays

blending functions.

Input: Knot vectors, degree for both parametric directions, type of knot vectors.

Errors: Input consists of less vertices than value of degree + 1 in either parametric direction.

Enumeration interval is empty in either parametric direction.

Methods: Knot insertion – inserts new knot value into knot vector for given parametric direction

(and computes new control vertices). Knot removal – removes knot value from knot vector (and

computes new control vertices) using Boehm’s algorithm.

11. Rational B-spline patch - NURBS

Depending on type of knot vectors, we either create uniform or open knot vector. In the case

of user defined vector we check this vector for size, knot multiplicity and property of non-

decreasing sequence. We solve any of these problems. Then we use de Boor algorithm

for evaluation of point on rational B-spline surface. Blending functions are calculated and

displayed in auxiliary window. Displays blending functions.

Input: Knot vectors, degree for both parametric directions, type of knot vectors. When it is

initialised, control points are organised in square with selectable size and have 𝑧 coordinate either

set to 0, random value or points lie on half sphere.

Errors: Input consists of less vertices than value of degree + 1 in either parametric direction.

Enumeration interval is empty in either parametric direction. Input consists of less than

3 non-collinear vertices with non-zero weight or all points with non-zero weights are in the same

row or column.

Methods: Knot insertion – inserts new knot value into knot vector for given parametric direction

(and computes new control vertices). Knot removal – removes knot value from knot vector (and

computes new control vertices) using Boehm’s algorithm.

48

3. Chapter – Implementation
This chapter describes implementation of Splines & Surfaces application. First we

describe implementation of forms and then classes for curves and surfaces.

3.1. Forms

 Main component in the main form MainForm is 3D window. It consists of embedded

OpenGL viewport. Its class can be downloaded from [14]. This viewport applies settings from

DisplayOptionsForm. Projection type, point or line smoothing, line’s width, size of points,

enumeration precision for objects, secondary spline and surface colour, patch display mode (point

cluster, wireframe, shaded and shaded with reflections) and visibility of vertices, control polygon,

grid, coordinate axes, isocurves, illustrating points or point on an object can be changed here.

If any change is made, it takes effect after user clicks on Apply or Apply and close button.

MainForm can be resized by user.

All points, lines and objects are visualised with method void UpdateWindow(), which

calls whichever function it needs from following list:

 void DrawAxes()

 void DrawGrid(int n, double size)

 void ShowXcoordinate(TVector point)

 void ShowYcoordinate(TVector point)

 void ShowZcoordinate(TVector point)

 void ShowCoordinates(TVector point)

 void ShowVertex(TVector points, GLfloat size, GLfloat r, GLfloat g,

GLfloat b)

 void ShowLine(TVector point1, TVector point2, GLfloat linewidth,

GLfloat r, GLfloat g, GLfloat b)

 void ShowPolyLine(vector<TVector> points, GLfloat linewidth, GLfloat

r, GLfloat g, GLfloat b)

 void ShowCurve(vector<TVector> points, bool smoothing,

GLfloat linewidth, GLfloat r, GLfloat g, GLfloat b, GLfloat r2,

GLfloat g2, GLfloat b2)

 void ShowVertices(vector<TVector> points, GLfloat size, GLfloat r,

GLfloat g, GLfloat b)

 void ShowPatchPoints(vector< vector<TVector> > points, GLfloat size,

GLfloat r, GLfloat g, GLfloat b)

 void ShowPatchPointsFergusson(vector< vector<TVector> > points,

GLfloat size, GLfloat r, GLfloat g, GLfloat b)

 void ShowControlNet(vector< vector<TVector> > points,

GLfloat linewidth, GLfloat r, GLfloat g, GLfloat b)

 void DrawPatch(vector< vector<TVector> > points,

vector< vector<TVector> > normals)

 void DrawWireFrame(vector< vector<TVector> > points,

GLfloat linewidth, GLfloat r, GLfloat g, GLfloat b)

 void DrawIsoCurves(vector< vector<TVector> > points,

GLfloat linewidth, GLfloat r, GLfloat g, GLfloat b)

49

View rotation is processed in void UpdateProjectionMatrix() and projection type is set

in void SetProjectionType().

 Application handles mouse events for both mouse click and mouse move according

to table of use cases on the page 76. It has integer values assigned to each system state, curve or

surface type and others.

Creating coordinates for defining and moving points is done with TVector

RayIntersection(TVector RayDirection, TVector RayOrigin, TVector PlaneNormal,

TVector PlaneOrigin) method. Functions

 tuple<int, int, double> NearestVertex(vector<TVector> Points,

TVector RayDirection, TVector RayOrigin, double MaxRadius)

 tuple<int, double> NearestTangent(TVector RayDirection,

TVector RayOrigin, double MaxRadius)

 tuple<int, int, double> NearestVertex(vector< vector<TVector> >

Points, TVector RayDirection, TVector RayOrigin, double MaxRadius)

depending on type of object, find closest point to mouse cursor. If it is closer than given threshold,

it will become selected.

 By clicking on whichever object type in menu or tool strip, either void

ComputeCurve(int type) or void ComputeSurface(int type) are called. Both initialise

chosen object and use its enumeration function create array of curve or surface points together

with point on object and isocurves for surface. In some cases blending functions are also drawn

inside Auxiliary window with void DrawPolynomials(int type) function. This function calls

subroutines for enumeration of blending function in respective class. If rational Bézier or

B-spline surface is modelled and weight of control point in 𝑖-th row and 𝑗-th column is

changed, rational blending functions are displayed either for 𝑖-th row or 𝑗-th column

for parametric direction 𝑢 and 𝑣, respectively. Numeric box for changing 𝑖 or 𝑗,

respectively, manually is located inside Control Box.

Control Box groups various functionality. It offers selection of parametric

direction, value of highlight parameter, degree for both parametric directions, multiplicity,

weight and 𝛽1, 𝑠 and 𝛽2 parameters. Values of multiplicity and weight are used in procedure of

modifying control point via Context menu. Other items include text boxes and group of parameters

for influencing initialisation of control net. If user wants construct affine surface from modelled

curve, he has to check check box with this functionality.

Parameters for curves and patches, namely parameter 𝑠, 𝛽1, 𝛽2, degrees 𝑛 and 𝑚 and

values of highlight parameter, multiplicity and weight of control vertex are being changed

in numeric up and down boxes. These have set reasonable minimum and maximum value (e.g.

parameters 𝑠, 𝛽1, multiplicity and weight cannot be negative etc.). Knot vectors are stored in

dynamically allocated array.

Initialisation of control net for tensor surfaces and bicubic Coons patch is modified

by parameters in Control net panel. Created control net is uniformly sampled square shaped object

with either 𝑧 coordinate of its control points 𝑧 = 0 for planar, 𝑧 elevated to a half-sphere or 𝑧 is

random. Number of points in both parametric directions is controlled by respective numeric boxes

50

and size of this net is controlled by Scale numeric box. For bicubic Coons patch, only this value

is used.

For surfaces, normals are calculated in void CalculateNormals(vector<

vector<TVector> > points) method with surface points as parameter. If object is already

created, and parameters or position of control points are changed, method void Recompute() is

called, which subsequently call functions for computing curve or surface, depending on object

type.

 Inside 3D window, Context menu can be displayed. It offers options to add new control

points on the end or begging of control points’ sequence, to specify vertex, which will open

SpecifyVertexForm, to delete control point, to change or to show its multiplicity or weight.

SpecifyVertexForm enables user to change position and other attributes of point

with much higher precision than just by mouse click. Specified vertex could be either already

created, or new one. Checked checkboxes select which values will be used during specification.

Subroutine void SpecifyVertex() is called to update or to create new point with specified

attributes.

 Save file function void SaveFile() saves current graphic object as “.txt” file. Load

function void LoadFile() processes loaded file token by token and creates new object from

read data. This functions calls void UpdateUI() method to update all numeric boxes with loaded

values.

KnotVectorOptionsForm is a form, which enables user to control knot vector. Form is

resizable, so in the case of long knot vector it is possible to show all of its content. Numeric boxes

for specifying index, its value, choice of parametric direction and options for setting knot vector

to open, uniform, changing value specified by index, increasing multiplicity of knot specified

by index and inserting or removing knot with specified value. Each change of knot index or value

causes option labels to refresh with current index or value. Every operation has to be confirmed

by Apply or Apply and close button. After mouse cursor leaves Apply, modified knot vector is

refreshed in respective label.

Function void ModifyKnotVector() is called in both cases to handle chosen operation.

In the case of inserting or removing knot, it first verifies if value of knot is in suitable interval and

if value of removed knot is in knot vector. Then it calls subroutines

 void UpdateKnotVector(int type, int i, double value)

type: defines parametric direction

i: specifies index of modified knot

value: new value of specified knot

Updates knot with specified index to new value.

 void IncreaseKnotMultiplicity(int type, double value)

type: defines parametric direction

value: new value of specified knot

Increases multiplicity of specified knot.

 void InsertKnot(int type, double value)

type: defines parametric direction

value: value of inserted knot

51

Calls appropriate subroutine inside TNURBSpline or TNURBSurface class to insert

new knot specified by value to knot vector.

 void RemoveKnot(int type, double value)

type: defines parametric direction

value: value of removed knot

Calls appropriate subroutine inside TNURBSpline or TNURBSurface class to remove

knot specified by value from knot vector.

 void SetKnotVector(int type)

type: defines type of knot vector

Changes type of knot vector to uniform, open or custom.

All these functions call void SetKnotStrings() after successful operation. It refreshes strings

of knots for KnotVectorOptionsForm.

During changing knot value or inserting new knot, knot value is tested if it knot with same

value already has maximum allowed multiplicity. It is performed by method

bool CheckKnotMultiplicity(int type, double value)

type: defines parametric direction

value: value of tested knot

In the case of increasing multiplicity of knot, it is tested if knot vector contains this knot.

 Text boxes are evaluated by bool EvaluateTextBox(bool parametricsurface, bool

parametriccurve) (where variables parametricsurface and parametriccurve specifies,

which text boxes are enumerated) function for certain types of surfaces and parametric curve.

It returns true if all content of all text boxes is properly defined and false otherwise. Application

uses external DLL library, muparser. It can be downloaded from [15]. This library offers

functionality needed to convert expression in a form of string to mathematical expression, which

can be evaluated later. Result of this operation is sequence of points that are later used as boundary

curves or axis of rotation. It is also used to convert contents of text boxes with intervals

for boundary curves.

 Input may consists of any combination of addition, subtraction, multiplication, division

of numbers or functions, all of which have predefined keyword. They are listed in table

of keywords on the page 78. Library recognizes constants 𝜋 and 𝑒, which have keywords pi and

e, respectively.

 Application detects errors for graphic objects specified earlier. Whenever it happens or

whenever user tries to make invalid operation, message box with appropriate text is displayed,

informing user about error. List of error and information messages is on the page 79 and 80,

respectively.

Form AboutForm has only purpose to show information about version of software and its

author. Icons for menu strip were created using screenshots from application. Only three icons

for new, save and load file functions were downloaded from [16].

52

3.2. Classes

TVector class is used for storing points. It has double type variables for 𝑥, 𝑦, 𝑧, 𝑤

coordinate and integer variable for multiplicity. Methods of this class include addition,

subtraction, multiplication by scalar, multiplication by another vector both scalar and cross

product, division by scalar, normalization and method for obtaining magnitude of vector. Actual

sequence of points (used as input, output, and private variables inside individual classes) is stored

in dynamically allocated array of points. In case of patches, this array is two dimensional.

 TQuaternion class is similar to TVector, it has four double type variables

for coordinates. Methods include addition, subtraction, multiplication by scalar and by another

quaternion, division by scalar and methods for obtaining magnitude, inverse and normalized

quaternion.

Figure 3-1 Class structure

 Class structure for graphic objects has root in TObject class. (Figure 3-1) It has integer

variable for error code and precision. It has only one method.

int GetError()

53

Returns integer code of an error.

3.2.1. Curve classes

 TCurve class contains all variables common to mostly all arcs and splines. Namely

sequence of control points, points on curve, point on curve corresponding to highlight parameter,

spline type, number of enumerated control points - precision and highlight parameter.

Class methods include setting up control vertices, precision, highlight parameter and

methods to obtain points on curve, control points and point on curve corresponding to highlight

parameter. This list includes only functions, which are used during enumeration.

TCurve

void SetControlPoints(vector<TVector> points)

points: sequence of control points

Sets control points for curve. If any control point has multiplicity greater than one, it creates new

control point with same coordinates and it is added into sequence just behind processed control

point.

void SetPrecision(int precision)

precision: precision defines number of enumerated points

Sets precision and clears current curve points.

TParametricCurve

void Init(vector<TVector> points, int precision, double parameter)

points: curve points

precision: number of enumerated points

parameter: highlight parameter

Initializes new points and other parameters for parametric curve. If all points have same

coordinates detects an error.

void ComputeCurve()

Actual enumeration of curve points is done in MainForm using muparser library. Point on curve

corresponding to highlight parameter is obtained for evaluated parametric value closest

to highlight parameter.

TBezierArc

void Init(vector<TVector> points, int precision, double parameter,

int isrational)

points: sequence of control points

precision: number of enumerated points

parameter: highlight parameter

isrational: defines whether curve is integral or rational Bézier arc

Initializes new control points and other parameters for integral or rational Bézier arc. Tests

number of points to catch an error if sequence does not have enough points.

54

void SetRationality(int isrational)

isrational: defines whether curve is integral or rational Bézier arc

Sets type of curve according to input.

void DegreeElevation()

Elevates degree of integral or rational Bézier arc and computes new control points.

void DegreeReduction(int method)

method: specifies method that is used to compute new control points

Reduces degree of integral or rational Bézier arc by chosen method and computes new control

points.

double BernsteinPolynomial(double t, int n, int i)

t: value, for which Bernstein polynomial is evaluated

n: degree of Bernstein polynomial

i: specifies 𝑖-th Bernstein polynomial to be evaluated

This function recursively enumerates specified polynomial. It is used to show blending functions.

double RationalPart(double t, int n)

t: value, for which Bernstein polynomials are evaluated

n: degree of Bernstein polynomials

This function recursively enumerates denominator of rational polynomial. It is used to show

blending functions for rational Bézier arc.

void ComputeCurve()

Computes points on integral or rational Bézier arc using de Casteljau algorithm. Point on curve

corresponding to highlight parameter is obtained for evaluated parametric value closest

to highlight parameter. Sequence of points corresponding to steps in de Casteljau algorithm

for highlight parameter is created.

THermiteArc

void Init(vector<TVector> points, int precision, double parameter, int type)

points: sequence of control points

precision: number of enumerated points

parameter: highlight parameter

type: defines whether arc is cubic or quintic

Initializes new control points and other parameters for Hermite arc. Tests number of points

to catch an error if sequence does not have enough points depeding on type of an arc.

void CalculateHermitTangents()

Depending on a type of Hermite arc calculates either two tangents or two tangents and two second

derivatives from control vertices.

double HermitePolynomial(double u, int n)

u: value, for which cubic Hermite polynomial is evaluated

n: specifies 𝑛-th cubic Hermite polynomial to be evaluated

55

This function enumerates specified cubic polynomial. It is used to show blending functions.

double HermitePolynomialQuintic(double u, int n)

u: value, for which quintic Hermite polynomial is evaluated

n: specifies 𝑛-th quintic Hermite polynomial to be evaluated

This function enumerates specified quintic polynomial. It is used to show blending functions.

void ComputeCurve()

Computes points on Hermite arc. Point on curve corresponding to highlight parameter is obtained

for evaluated parametric value closest to highlight parameter.

THermiteSpline

void Init(vector<TVector> points, int precision, double parameter,

int splinetype, TVector tangents[2])

points: sequence of control points

precision: number of enumerated points for each segment

parameter: highlight parameter

splinetype: specifies end condition

tangents[2]: two tangents for clamped spline

Initializes new control points and other parameters for Hermite spline. Tests number of points

to catch an error if sequence does not have enough points.

void SetTangents(TVector tangents[2])

tangents[2]: two tangents for clamped spline

Sets tangents for clamped spline.

void SetSplineType(int splinetype)

splinetype: spline type defines end condition

Each end condition has assigned an integer number. Depending on its value, new control points

satisfying chosen end condition are calculated. If spline type is incompatible, catches an error.

double HermitePolynomial(double u, int n)

u: value, for which cubic Hermite polynomial is evaluated

n: specifies 𝑛 − 𝑡ℎ cubic Hermite polynomial to be evaluated

This function enumerates specified cubic polynomial. It is used to show blending functions.

void CalculateTangents()

Calculates tangent in each control point.

vector<TVector> SolveSystem(vector< vector<double> > A, vector<TVector> x)

A: system of linear equations

x: vector consisting of constant terms

Finds solution for given system of linear equations using Gauss elimination.

void ComputeCurve()

56

Computes points on Hermite spline. Each segment is treated as Hermite arc and it is evaluated

by THermiteArc’s function. Point on curve corresponding to highlight parameter is obtained

for evaluated parametric value closest to highlight parameter.

TCardinalSpline

void Init(vector<TVector> points, int precision, double parameter,

double sparameter, int splinetype, TVector tangents[2])

points: sequence of control points

precision: number of enumerated points for each segment

parameter: highlight parameter

sparameter: parameter 𝑠

splinetype: specifies end condition

tangents[2]: two tangents for clamped spline

Initializes new control points and other parameters for Cardinal spline. Tests number of points

to catch an error if sequence does not have enough points.

void SetSParameter(double sparam)

sparameter: parameter 𝑠

Sets value of parameter 𝑠.

void SetTangents(TVector tangents[2])

tangents[2]: two tangents for clamped spline

Sets tangents for clamped spline.

void SetSplineType(int splinetype)

splinetype: spline type defines end condition

Each end condition has assigned an integer number. Depending on its value, new control points

satisfying chosen end condition are calculated. If spline type is incompatible, catches an error.

double CardinalPolynomial(double u, int n)

u: value, for which cubic cardinal polynomial is evaluated

n: specifies 𝑛-th cubic cardinal polynomial to be evaluated

This function enumerates specified polynomial. It is used to show blending functions.

void ComputeCurve()

Computes points on Cardinal spline. Point on curve corresponding to highlight parameter is

obtained for evaluated parametric value closest to highlight parameter.

TBezierSpline

void Init(vector<TVector> points, int precision, double parameter,

int typeisrational, bool clamped, TVector tangents[2])

points: Sequence of control points

precision: Number of enumerated points for each segment

parameter: highlight parameter

typeisrational: defines whether curve is integral or rational and interpolation or

 approximation Bézier spline

57

clamped: defines whether spline is clamped or not

tangents[2]: two tangents for clamped spline

Initializes new control points and other parameters for integral or rational and approximation

or interpolation Bézier spline. Tests number of points to catch an error if sequence does not have

enough points.

void SetRationality(int isrational)

isrational: defines whether curve is integral or rational Bézier spline

Sets type of spline according to input.

void SetTangents(TVector tangents[2])

tangents[2]: two tangents for clamped spline

Sets tangents for clamped spline.

void CreateNewControlPoints()

Creates control points for each segment depending on type of spline and whether it is clamped

spline or not.

vector<TVector> SolveSystem(vector< vector<double> > A, vector<TVector> x)

A: system of linear equations

x: vector consisting of constant terms

Finds solution for given system of linear equations using Gauss elimination.

void ComputeCurve()

Computes points on integral or rational Bézier spline. Each segment is treated as integral or

rational Bézier arc and it is evaluated by TBezierArc’s function. Point on curve corresponding

to highlight parameter is obtained for evaluated parametric value closest to highlight parameter.

TBetaSpline

void Init(vector<TVector> points, int precision, double parameter, double

beta1, double beta2, int splinetype, TVector tangents[2])

points: sequence of control points

precision: number of enumerated points for each segment

parameter: highlight parameter

beta1: parameter 𝛽1

beta2: parameter 𝛽2

splinetype: specifies end condition

tangents[2]: two tangents for clamped spline

Initializes new control points and other parameters for Beta spline. Tests number of points

to catch an error if sequence does not have enough points.

void SetBeta(double beta1, double beta2)

beta1: parameter 𝛽1

beta2: parameter 𝛽2

Sets values of parameters 𝛽1 and 𝛽2.

58

void SetTangents(TVector tangents[2])

tangents[2]: two tangents for clamped spline

Sets tangents for clamped spline.

void SetSplineType(int splinetype)

splinetype: spline type defines end condition

Each end condition has assigned an integer number. Depending on its value, new control points

satisfying chosen end condition are calculated. If spline type is incompatible, catches an error.

double BetaPolynomial(double u, int n)

u: value, for which cubic Hermite polynomial is evaluated

n: specifies 𝑛-th cubic Hermite polynomial to be evaluated

This function enumerates specified polynomial. It is used to show blending functions.

void ComputeCurve()

Computes points on Beta spline. Point on curve corresponding to highlight parameter is obtained

for evaluated parametric value closest to highlight parameter.

TNURBSpline

void Init(vector<TVector> points, int precision, vector<double> knots,

double parameter, int degree, int isrational, int knotvectortype)

points: sequence of control points

precision: number of enumerated points for each segment

knots: knot vector

parameter: highlight parameter

degree: degree of spline

isrational: defines whether curve is integral or is rational B-spline

knotvectortype: specifies type of knot vector

Initializes new control points and other parameters for integral or rational B-spline.

void SetRationality(int isrational)

isrational: defines whether curve is integral or rational B-spline

Sets type of curve according to input.

void SetDegree(int degree)

degree: degree of spline

Sets degree of spline. Tests number of points to catch an error if sequence does not have enough

points.

void SetKnotVectorType(int knotvectortype)

knotvectortype: specifies type of knot vector

Sets type of knot vector.

void SetKnotVector(vector<double> knots)

knots: knot vector

59

Sets knot vector for B-spline. Depending on type of knot vector, either creates knot vector

(in the case of uniform or open knot vector) or checks user defined knot vector for size, maximum

multiplicity and non-decreasing property. Any problem is solved either by sorting, deleting or

creating new knots. If enumeration interval is empty, catches an error.

void KnotRemoval(double knotvalue)

knotvalue: knot value, which is removed from knot vector

Removes knot from knot vector and computes new control vertices, both for integral or rational

B-spline.

void KnotInsertion(double knotvalue)

knotvalue: knot value, which is inserted to knot vector

Inserts knot into knot vector using Boehm’s algorithm and computes new control vertices, both

for integral or rational B-spline.

double NURBSPolynomial(double u, int p, int i)

u: value, for which B-spline polynomial is evaluated

p: degree of B-spline polynomial

i: specifies 𝑖-th B-spline polynomial to be evaluated

This function recursively enumerates specified polynomial. It is used to show blending functions.

double RationalPart(double u, int p)

u: value, for which B-spline polynomials are evaluated

p: degree of B-spline polynomials

This function recursively enumerates denominator of rational polynomial. It is used to show

blending functions for NURBS spline.

void ComputeCurve()

Computes points on integral or rational B-spline using de Boor algorithm. Point on curve

corresponding to highlight parameter is obtained for evaluated parametric value closest

to highlight parameter. Sequence of points corresponding to steps in de Boor algorithm for

highlight parameter is created.

3.2.2. Surface classes

TPatch class contains all variables common to mostly all arcs and splines. Namely two

dimensional array of control points and points on patch, point on patch corresponding to highlight

parameter, precision and highlight parameter. This list includes only functions, which are used

during enumeration.

TPatch

void SetControlPoints(vector< vector<TVector> > points)

points: two dimensional array of control points

Sets control net for patch.

void SetPrecision(int precision)

precision: precision defines both sizes of two dimensional array for enumerated points

60

Sets precision and clears current patch points.

TParametricSurface

void Init(vector< vector<TVector> > points, int precision, double parameter[2])

points: two dimensional array of surface points

precision: defines both sizes of two dimensional array for enumerated points

parameter[2]: highlight parameter

Initializes new points and other parameters for parametric curve. If all points have same

coordinates detects an error.

void ComputePatch()

Actual enumeration of surface points is done in MainForm using muparser library. Point on patch

and isocurves corresponding to highlight parameter are obtained for evaluated parametric value

closest to highlight parameter.

TAffineSurface

void Init(vector< vector<TVector> > points, TVector axis, int precision, double

parameter[2], double angle[2], int type)

points: two sequences of control points

precision: defines both sizes of two dimensional array for enumerated points

parameter[2]: highlight parameter

angle[2]: defines angle of rotation

type: defines whether result is surface of revolution or extruded surface

Initializes new control points and other parameters for surface of revolution or extruded surface.

Depending on type tests, if one or both curves are degenerated to a single point or if interval

for rotation is empty or if curve lies in plane perpendicular to axis of rotation.

void ComputePatch()

Computes points on surface of revolution or extruded surface. In case of surface of revolution,

spherical interpolation is used on quaternions to evaluate points on patch. Point on patch and

isocurves corresponding to highlight parameter are obtained for evaluated parametric value

closest to highlight parameter.

TCoonsPatch

void Init(vector< vector<TVector> > points, int precision, double parameter[2],

int type, int twisttype, int scale)

points: four sequences of control points

precision: defines both sizes of two dimensional array for enumerated points

parameter[2]: highlight parameter

type: defines whether patch is linear, bilinear, partially bicubic or bicubic Coons

patch.

twisttype: defines method for computing twist vectors

scale: defines scale of created control net for bicubic Coons patch

61

Initializes new control points and other parameters for Coons patch. Detects if boundary curves

are degenerated to a single point or if they fulfil 𝐶0 compatibility. In the case of bicubic Coons

patch sets twist vectors according to specified type.

void SetTwistType(int twisttype)

twisttype: defines method for computing twist vectors

Sets type of twist vector.

void SetControlPointsandTangents()

If bicubic Coons patch is initialized, sets up control points for it scaled by scale modifier.

void CalculateTangents()

Calculates tangents and twist vectors, depending on their type, from control points.

double HermitePolynomial(double u, int n)

u: value, for which cubic Hermite polynomial is evaluated

n: specifies 𝑛-th cubic Hermite polynomial to be evaluated

This function enumerates specified cubic polynomial. It is used to show blending functions.

void ComputePatch()

Computes points on linear, bilinear, partially bicubic or bicubic Coons patch. Point on patch and

isocurves corresponding to highlight parameter are obtained for evaluated parametric value

closest to highlight parameter.

TBezierSurface

void Init(vector< vector<TVector> > points, int precision, double parameter[2],

int isrational)

points: two dimensional array of control points

precision: defines both sizes of two dimensional array for enumerated points

parameter[2]: highlight parameter

isrational: defines whether patch is integral or rational Bézier patch

Initializes new control net and other parameters for integral or rational Bézier patch.

void SetRationality(int isrational)

isrational: defines whether patch is integral or rational B- patch

Sets type of patch according to input. Detects if input consists of less than 3 non-collinear vertices

with non-zero weight or all points with non-zero weights are in the same row or column.

void DegreeElevation(int type)

type: defines parametric direction for degree elevation

Elevates degree of integral or rational Bézier patch in given parametric direction and computes

new control points.

void DegreeReduction(int type, int method)

type: defines parametric direction for degree elevation

method: specifies method that is used to compute new control points

62

Reduces degree of integral or rational Bézier patch in given parametric direction by chosen

method and computes new control points.

double BernsteinPolynomial(double t, int n, int i)

t: value, for which Bernstein polynomial is evaluated

n: degree of Bernstein polynomial

i: specifies 𝑖-th Bernstein polynomial to be evaluated

This function recursively enumerates specified polynomial. It is used to show blending functions.

double RationalPart(int type, int cr, double t, int n)

type: specifies parametric direction

cr: specifies column or row of control net

t: value, for which Bernstein polynomials are evaluated

n: degree of Bernstein polynomials

This function recursively enumerates denominator of rational polynomial. It is used to show

blending functions for rational Bézier patch.

void ComputePatch()

Computes points on integral or rational Bézier patch by using bilinear interpolation. Point

on patch and isocurves corresponding to highlight parameter are obtained for evaluated

parametric value closest to highlight parameter.

TNURBSurface

void Init(vector< vector<TVector> > points, int precision, vector<double>

knotsu, vector<double> knotsv, double parameter[2], int degree[2],

int isrational, int knotvectortype[2])

points: two dimensional array of control points

precision: defines both sizes of two dimensional array for enumerated points

knotsu: knot vector for parametric direction 𝑢

knotsv: knot vector for parametric direction 𝑣

parameter[2]: highlight parameter

degree[2]: degree of patch in both parametric directions

isrational: defines whether patch is integral or rational B-spline patch

knotvectortype[2]: specifies types of knot vectors

Initializes new control net and other parameters for integral or rational B-spline patch.

void SetRationality(int isrational)

isrational: defines whether patch is integral or rational B-spline

Sets type of patch according to input. Detects if input consists of less than 3 non-collinear vertices

with non-zero weight or all points with non-zero weights are in the same row or column.

void SetDegree(int degree[2])

degree[2]: degree of patch in both parametric directions

Set degree of spline. Tests number of points to catch an error if sequence does not have enough

points.

void SetKnotVectorType(int knotvectortype[2])

63

knotvectortype[2]: specifies types of both knot vectors

Sets type of knot vector.

void SetKnotVectorType(int type, int knotvectortype)

type: specifies which knot vector is modified

knotvectortype: specifies type of knot vector

Sets type of knot vector for chosen knot vector.

void SetKnotVector(int type, vector<double> knots)

type: specifies which knot vector is modified

knots: knot vector

Sets knot vector for NURBS surface. Depending on type of knot vector, either creates knot vector

(in the case of uniform or open knot vector) or checks user defined knot vector for size, maximum

multiplicity and non-decreasing property. Any problem is solved either by sorting, deleting or

creating new knots. If enumeration interval is empty, catches an error.

double NURBSPolynomial(int type, double u, int p, int i)

type: specifies knot vector on which B-spline polynomial is evaluated

u: value, for which B-spline polynomial is evaluated

p: degree of B-spline polynomial

i: specifies 𝑖-th B-spline polynomial to be evaluated

This function enumerates specified polynomial. It is used to show blending functions.

double RationalPart(int type, int cr, double t, int n)

type: specifies parametric direction

cr: specifies column or row of control net

t: value, for which rational B-spline polynomials are evaluated

n: degree of B-spline polynomials

This function recursively enumerates denominator of rational polynomial. It is used to show

blending functions for rational NURBS patch.

void KnotRemoval(int type, double knotvalue)

type: specifies knot vector from which knot is removed

knotvalue: knot value, which is removed from knot vector

Removes knot from specified knot vector and computes new control vertices, both for integral or

rational B-spline patch.

void KnotInsertion(int type, double knotvalue)

type: specifies knot vector to which knot is inserted

knotvalue: knot value, which is inserted to knot vector

Inserts knot into knot vector using Boehm’s algorithm and computes new control vertices, both

for integral or rational B-spline patch.

void ComputePatch()

Computes points on integral or rational B-spline patch using de Boor algorithm. Point on patch

and isocurves corresponding to highlight parameter are obtained for evaluated parametric value

closest to highlight parameter.

64

4. Chapter – User’s guide

4.1. Installation

 In order to run this application, you have to use at least Windows XP. You also need both

Visual C++ Redistributable for Visual Studio 2012 Update 4 package and Microsoft .NET

Framework 4 Client Profile installed. Both can be downloaded from [12] and [13] or you can find

them on the included CD. You have to choose correct version for x86 or x64 architecture (32-bit

and 64-bit).

File “muparserd32.dll” and/or “muparserd64.dll” have to be in same folder as

executable file “Splines and surfaces.exe” in order to secure full functionality.

4.2. Graphic user interface

Figure 4-1 Main window of Splines & Surfaces

 When you launch Splines & Surfaces application, main window will show up

(Figure 4-1). Menu strip is located in its top part. Tool strip is just under menu. The largest part

of window is occupied by 3D window. All graphic objects you create and modify will be displayed

here. On the right side of 3D window are Auxiliary window and Control box under it.

Inside menu under File tab, you can choose

 New create new object

65

 Save save currently modelled object

 Load load any previously saved object.

If you choose Save or Load, you will be prompted to choose folder and/or file name. Last option

in this submenu is Quit. Under second tab Options you can find Display options and Curve and

patch options. Display options are described below.

Curve and patch options include functions:

 Degree reduction for Bézier curve or patch

Reduces degree of Bézier curve or patch with preselected method and recomputes current

object. In case of patch, degree reduction will happen in selected parametric direction.

If you hover mouse over this option, 3 more options will show up. These define method

for reducing degree. You can choose one of them method by clicking on it.

o Method i/n

o Method 0 : 1

o Method sum

 Degree elevation for Bézier curve or patch

Elevates degree of Bézier curve or patch with preselected method and recomputes current

object.

 Reset weights of control points

Sets weights for all control points to 1.

 Reset multiplicity of control points

Sets multiplicity for all control points to 1.

 Set open knot vector

Sets knot vector type for selected parametric direction to open.

 Set uniform knot vector

Sets knot vector type for selected parametric direction to uniform.

 Set spline type

Sets spline type to one of following:

o Default – no end condition

o Double endpoints

o Triple endpoints

o Relaxed spline

o Clamped spline

o Cyclic spline

o Acyclic spline

o Quadratic condition

Under Arcs tab you can choose:

 Parametric curve

 Bézier arc

o Integral

o Rational

 Hermite arc

o Cubic

o Quintic

66

Under Splines tab you can choose:

 Hermite spline

 Cardinal spline

 Bézier spline

o Integral approximation Bézier spline

o Rational approximation Bézier spline

o Integral interpolation Bézier spline

o Rational interpolation Bézier spline

 Beta spline

 B-spline:

o Integral

o Rational - NURBS

Under Surfaces tab you can choose:

 Parametric surface

 Affine surface

o Surface of revolution

o Extruded surface

 Coons patch:

o Linear

o Bilinear

o Partially bicubic

o Bicubic

 Fergusson patch

 Adini twist

 Custom twist

 Bézier patch:

o Integral

o Rational

 B-spline patch:

o Integral

o Rational - NURBS

Under About you can find information about author and version of software.

Just below Menu strip you see toolbar. It contains icons representing functions:

 New

 Save

 Load

 Reset view

 Top view

 Degree elevation for Bézier curve or patch

 Degree reduction for Bézier curve or patch

 Set open knot vector

 Set uniform knot vector

67

 Other buttons include all types of arcs, curves and surfaces. If you hover mouse cursor

over any of them, tool tip shows up with information about object type.

On the right side of window, you can see large white square. This is Auxiliary window.

Here, blending functions are displayed for most objects and also knot vector if it is used. In that

case you can press right mouse button to show Knot vector options window. We describe it in

detail later. Control box is located under this white square (described below).

4.3. Display options

Figure 4-2 Display options

 Display options window (Figure 4-2) covers all options which can modify how objects

you create will look. You can change size of points, width of lines, curve and lines for wireframe.

Next two numeric boxes control how precise will be object enumerated. It defines number

of points that will form the object. Setting this value too high may result in lag, especially

for parametric curve and surfaces. Last numeric box enables you to change size of grid in a plane

𝑧 = 0.

 You can choose secondary colour for spline. Each odd segments will be coloured

with this colour, so you can clearly see end points of each segment. Surface colour defines its

base colour, which can be modified by shading.

 Application offers you choice between orthographic and perspective projection. You can

change it at any time. If you want display points as squares and not circles, deselect point

smoothing option. Line smoothing applies antialiasing to lines and makes them little bit wider.

 Show / hide section lets you select which objects will be displayed. Vertices and Control

polygon / net applies for all curves but only for tensor product surfaces. Grid, Axes, Isocurves and

Point on object are self-explanatory. Illustration points are points, which will show you process

of curve enumeration. This applies in the case of Bézier arc, Bézier spline, B-spline and rational

curves of these types. For (rational) Bézier approximation spline, control points for each segment

and for interpolation spline points required to create 𝐶2 continuous spline are displayed. If you

68

have Hermite spline modelled then it will show you tangents at control points. If you hide control

polygon, tangents are still displayed as points and lines illustrating algorithms are still visible.

 In Surface display mode you can choose, how the surface will look. Default option is

Wireframe, which is formed by lines connecting enumerated points on surface. Faceted surface

displays whole patch with single colour. Shaded surface and Shaded surface with reflections

incorporate lights into the scene. Last option Point cluster renders only points on surface.

4.4. Control box

Figure 4-3 Control box

Control box (Figure 4-3) offers functionality to modify objects and each sub-section has

tool tips ready to display. Under Parameter you can choose parameter, for which blending

functions will be displayed in Auxiliary window. You can change value of highlight parameter

by setting it inside numeric box or if change u/v is selected, by left clicking inside Auxiliary

window. If change knots is selected and knots are displayed inside Auxiliary window (blue hollow

rectangles), you can select one of them by pressing left mouse button, if mouse cursor is close

enough. Selected knot will then become blue filled rectangle. By next left mouse click inside this

window, you can define new value for selected knot and it will become hollow rectangle again

(unselected).

Numeric box Row or column specifies which row or column of blending functions will

be displayed. In 𝑢 and 𝑣 parametric direction it shows selected row and column, respectively.

This option applies only for rational Bézier and B-spline surfaces.

69

Modifiers group include numeric boxes for degree in both parametric directions,

multiplicity, weight and 𝛽1, 𝑠 and 𝛽2 parameters. Values of multiplicity and weight are used

in procedure of modifying control point.

Inside text boxes you can define curves, which will be used to construct surfaces. Text

boxes labelled u interval, v interval and Rotation interval define intervals for 𝑢, 𝑣 and rotation,

respectively. Content of these text boxes have to be two numbers separated by “;” and you can

use “,” as decimal separator. You can define these numbers as value of a function, for example

sin (5 ∗ 𝜋). Axis text box defines axis of rotation for surface of revolution. Four curves (first

of them serves also for parametric curve) can be defined via text boxes labelled C0(u)/p(u), C1(u),

D0(v) and D1(v). These five text boxes therefore need three numbers or expressions, respectively.

Next three text boxes 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣) and 𝑧(𝑢, 𝑣) are used to define parametric surface. Here only

one expression per text box is needed. In all text boxes use only the parameter denoted

in parenthesis for each respective expression. You can use any combination of addition,

subtraction, multiplication, division of numbers or functions, all of which have predefined

keyword. They are listed in table of keywords on the page 78.

If you want to save (and later load) your object created from text boxes’ definition, you

have to make sure that all expressions do not have spaces in them, but are separated with at least

one space. For example (good)

 u+1; u^2-2; sin(u)+1,5 for text boxes C0(u)/p(u), C1(u), D0(v) and D1(v)

 u*2+1 for text boxes 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣) and 𝑧(𝑢, 𝑣)

 0,1; 1,3 for intervals text boxes

as opposed to (wrong)

 u +1;u^2- 2;sin(u) +1 for text boxes C0(u)/p(u), C1(u), D0(v) and D1(v)

 u * 3,8 + 1.5 for text boxes 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣) and 𝑧(𝑢, 𝑣)

 0,0;1,3 for intervals text boxes

which will not cause an error during evaluating but loading object will fail completely. You can

use constants 𝜋 and 𝑒, which have keywords pi and e, respectively .

Evaluate text boxes button serves to refresh currently modelled object. If you check Affine

surface from curve checkbox, then affine surface will be constructed from curve, you have

previously modelled.

You can choose End condition from list. In the case it is not supported by current spline,

you will see error message. In the case of Clamped application’s input mode will change

to awaiting coordinates for tangent vectors. You have to define 2 tangent vectors. Process of

defining these tangents is totally same as defining points.

70

 Control net group defines parameters for initialisation of control net for tensor product

surfaces and for bicubic Coons patch. You can change number of points via two numeric boxes

(only for tensor product surfaces) and scale affects overall size of control net. List box contains

options:

 Plane: control points have 𝑧 coordinate 0

 Elevated: control points are located on an arc

 Random: control points have random 𝑧 coordinate

4.5. Controls

When the application starts, it is awaiting coordinates of points. If you move mouse

cursor, lines indicating actual cursor coordinates will show up. You can press left mouse button

to set 𝑥 and 𝑦 coordinates of control point. Now application awaits 𝑧 coordinate. You can either

press left mouse button, which will set 𝑧 coordinate to cursor position or press right mouse button

to set 𝑧 coordinate to 0. Application awaits again 𝑥 and 𝑦 coordinates for next control point. You

can add as many points as you need. If you are finished with defining control points, you press

right mouse button to cancel mode of defining new control points. In this mode coordinates

of cursor are not displayed.

If you want to change position of any control point, you move mouse cursor above it.

It will become selected if the cursor is close enough and application will let you know

by highlighting that point with red colour and drawing lines to better illustrate its coordinates.

Now press left mouse button. Again, define new 𝑥 and 𝑦 coordinates by left clicking. If you press

right mouse button, 𝑥 and 𝑦 coordinates will not change. After pressing one or the other, you have

to set 𝑧 coordinate. You can set it to mouse cursor position by pressing left mouse button or to 0

by pressing right mouse button. It is essentially the same procedure as defining new point.

If you are not in point defining mode and no control point is selected, you can press left

mouse button to start rotating 3D window. Moving mouse cursor now rotates viewport. You can

accept new view by pressing left mouse button or right mouse button. Zooming in and out is done

via turning the mouse wheel at any time. If you press arrows on keyboard at any time with mouse

cursor inside 3D window, view port will shift in that direction.

If you are not in point defining mode, you can press right mouse button to show Context

menu. (Figure 4-4)

Figure 4-4 Context menu

71

It offers you choices of:

 Add control vertex at the end

Enables you to add more control points to end of control points’ sequence.

 Add control vertices at the beginning

Enables you to add more control points to beginning of control points’ sequence.

 Specify vertex

Show form for specifying vertex. It is described in detail below.

 Delete control vertex

If you have selected control point, it will delete it form sequence of control points.

 Change multiplicity of control vertex

Sets multiplicity of selected control vertex to value specified in numeric box

labelled Multiplicity located inside Control box

 Change weight of control vertex

Sets weight of selected control vertex to value specified in numeric box labelled

Weight located inside Control box

 Show multiplicity of control vertex

Displays message window with value of multiplicity for selected vertex.

 Show weight of control vertex

 Displays message window with value of weight for selected vertex.

 Cancel

Closes this context menu.

Choosing Specify vertex option will open new window. (Figure 4-5) If offers you two or

only one choice, according to whether you have or have not selected control point (or tangent)

before.

Figure 4-5 Specify vertex

 In the first case, you can only add new vertex to the end of control points’ sequence. In

the second case you can also modify selected vertex. Its actual coordinates are displayed too so

you can see them at once. Check boxes allows you to change only some attributes of selected

point. They do not have effect on attributes of new point.

72

4.6. Modelling objects

Objects are divided to two main groups, splines and surfaces. For splines, except one

curve type, you have define control polygon by yourself. In the case of surfaces, application first

creates the object and then you can modify it.

 For arcs and spline, you simply create sequence of control points and then choose type

of curve you want. You can modify it by changing position, weight and multiplicity of control

vertices or tangents (in some cases even vectors of second derivative), modifying knot vector,

changing end condition or using numeric boxes in control box if current spline is modifiable

by them. If you select Clamped, application awaits coordinates for two tangent vectors. You

define them exactly as control points. Changes will occur immediately.

 One exception is parametric curve. This is defined by text box inside Control box and this

is the only way to modify its shape (other than changing its enumerating interval). When you

modify this expression, either choose Parametric curve from menu, click on its icon in toolbar or

click on Evaluate text boxes button.

 For surfaces, there are generally two ways to model them. For Bézier, B-spline and

Bicubic Coons patch, control net is created by application. Scale of this control net is controlled

by Size numeric box inside Control net in Control box. # of points U and# of points V do not affect

bicubic Coons patch. You can modify it by changing position or weights, modifying knot vector

and choosing different types of twist vectors.

 If you model rational Bézier or B-spline surface, you can select which row or column

of blending functions you want to see in Auxialiary window. You can select it in numeric box

Row or column.

 Other group consists of affine surfaces, Coons patches other than bicubic and parametric

surface. All of them are defined by multiple text boxes inside Control box. Here you can change

predefined expressions to modify shape of surface. In order to change take effect, you either

choose desired type of surface in menu, click on its icon in toolbar or if you have any one of these

surfaces already created, click on Evaluate text boxes button.

 Affine surfaces offers you option to create surface of revolution or extruded surface either

from curve, also called profile curve, defined in text box or the one you have modelled. First, you

have to create a sequence of control points and select type of curve. Then you have to choose

either type of affine surface and then select Affine surface from curve option. You can uncheck it

at any time. To modify curve, which is now used to create affine surface, click on any one type

of curve. This will bring you to curve modelling mode, where you can modify curve’s shape.

When you are satisfied, you can again select Affine surface from curve option.

 If you will change precision with this option active, application will show message saying

that no curve is defined. All you have to do is to select type of curve you want to be profile curve,

then select type of affine surface and then finally select Affine surface from curve option.

73

Figure 4-6 Knot vector options

Application will show you this window once you have B-spline curve or B-spline patch

modelled and you press right mouse button while mouse cursor is in Auxiliary window.

(Figure 4-6) In the case of patches, you can choose knot vector for respective parametric direction.

Two numeric boxes change index and value of knot. If you change their value, labels

for operations will change itself so you can clearly see which knot with its current value will be

modified to new value, its multiplicity will be increased or which knot value will be inserted or

removed from knot vector. Other two operations serves purpose of setting knot vector type

to open or uniform. If you have clicked on Apply button, move mouse cursor away from it and

new knot vector will be written down.

74

Conclusion
 There are many software applications for visualisation of splines and surfaces. We can

divide them in to two groups – web applets and other simple programs and other one is

professional CAD tools.

Web applets are usually designed to visualise only one type of curve or spline and each

one of them may have different design and controls. This is not the case in Splines & Surfaces.

 Professional software for CAD on the other hand usually comes with well devised

controls and design. One downside to this is that they are not often free to use and second that

these applications are designed for work and not for educational purpose.

 We have not find any other software that would offer such wide variety types of splines

and surfaces. For sure there are better applications than Splines & Surfaces, in terms of rendering,

creating large surfaces composed form large number of patches, mainly professional ones, but we

think that it is suitable for the job.

Modification of source code can be also used as template for students. They would not

have to design and develop entire application, which takes much more time than writing code

only for example initialisation of B-spline and de Boor’s algorithm.

 Possible extensions in the future may include new classes of both splines and surfaces,

for example Bézier triangle patches or DMS splines, visualisation of bi-parametric blending

functions as surfaces, creating more than one object, for example tensor and triangle Bézier patch

as well as improved rendering options. Including new class into implementation should not be

very difficult.

75

Literature

[1] KUDLIČKOVÁ, S.: Representation of geometric objects, study materials. [online] 3.5.2016

Available at < https://flurry.dg.fmph.uniba.sk/webog/sk/kudlickova-vyucba/311-reprezentacie-

geometrickych-objektov.html >

[2] ROGERS, F. D.: An introduction to NURBS With Historical Perspective. San Francisco :

Morgan Kaufmann, 2001. 324 p. ISBN 1-55860-669-6

[3] FARIN, G.: Curves and surfaces CAGD A practical guide. Fifth edition. San Francisco : Morgan

Kaufmann, 2001. 520 p. ISBN 1-55860-737-4

[4] SZIRMAY-KALOS, L. et al.: Theory of Three Dimensional Computer Graphics. [online]

3.5.2016 Available at < http://www.fsz.bme.hu/~szirmay/ani.pdf >

[5] HOSCHEK J. – LASSER, D.: Fundamentals of Compute Aided Geometric Design. Wellesley,

Massachusetts : A K Peters, 1993. 727 p. ISBN 1-56881-007-5

[6] MORGAN, D.: Degree reduction of Bézier curves. [online] 3.5.2016 Available at

< http://yamnuska.ca/geek/degreeReductionBezier.pdf >

[7] SEDERBERG, W. T.: Computer aided geometric design. [online] 3.5.2016 Available at

< http://tom.cs.byu.edu/~557/text/cagd.pdf >

[8] ECK, M. – HADENFELD, J.: Knot Removal for B-Spline Curves. [online] 2.5.2016 Avaible at

< http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.177&rep=rep1&type=pdf >

[9] MARSH, D.: Applied Geometry for Computer Graphics and CAD. Great Britain : Springer,

1999. 288 p. ISBN 1852330805

[10] CHALMOVIANSKY, P.: Modelling curves and surfaces, study materials

[11] AGARWAL, R. B.: Computer Aided Design in Mechanical Engineering. [online] 3.5.2016

Available at < http://www.engr.sjsu.edu/ragarwal/ME165/ME165_Lecture_Notes_files/ >

[12] MICROSOFT. Visual C++ Redistributable for Visual Studio 2012 Update 4 [online] 3.5.2016

< https://www.microsoft.com/en-us/download/details.aspx?id=30679 >

[13] MICROSOFT. .NET Framework 4 Client Profile (Standalone Installer) [online] 3.5.2016

< https://www.microsoft.com/en-us/download/details.aspx?id=24872 >

[14] WOOTON, B. Creating an OpenGL view on a Windows Form. [online] 3.5.2016

< www.codeproject.com/Articles/16051/Creating-an-OpenGL-view-on-a-Windows-Form >

[15] MUPARSER. [online] 3.5.2016 < http://beltoforion.de/article.php?a=muparser >

[16] ICONMOON. Web application Icons by IconMoon. [online] 3.5.2016

< http://www.iconarchive.com/show/web-application-icons-by-iconmoon.html >

76

Attachments
Table 1 Use cases

INPUT SYSTEM STATE RESPONSE

Left mouse button pressed
Awaiting 𝑥 and 𝑦 coordinates

for sequence of control points

Set 𝑥 and 𝑦 coordinate as

intersection with plane 𝑧 = 0,

change state to await 𝑧

coordinate for sequence

Left mouse button pressed
Awaiting 𝑧 coordinate for

sequence of control points

Set 𝑧 coordinate as intersection

with plane 𝑦 = 0, change state

to await 𝑥 and 𝑦 coordinate

for sequence

Right mouse button pressed
Awaiting 𝑧 coordinate for

sequence of control points

Set 𝑧 coordinate to 0, change

state to await 𝑥 and 𝑦

coordinate for sequence

Right mouse button pressed
Awaiting 𝑥 and 𝑦 coordinates

for sequence of control points

Finish constructing sequence

of control points, change state

to awaiting input

Right mouse button pressed Awaiting input Show context menu

Mouse move Awaiting input

Detect if cursor is around any

control point, if it is, select

point, if not, deselect point

Left mouse button pressed Awaiting input, point selected
Change state to await 𝑥 and 𝑦

coordinate for selected point

Left mouse button pressed
Awaiting 𝑥 and 𝑦 coordinate

for selected point

Set 𝑥 and 𝑦 coordinate as

intersection with plane 𝑧 = 0,

change state to await 𝑧

coordinate for selected point

Right mouse button pressed
Awaiting 𝑥 and 𝑦 coordinate

for selected point

Do not change 𝑥 and 𝑦

coordinate, change state to

await 𝑧 coordinate for selected

point

77

Left mouse button pressed
Awaiting 𝑧 coordinate for

selected point

Set 𝑧 coordinate as intersection

with plane 𝑦 = 0, change state

to await input

Right mouse button pressed
Awaiting 𝑧 coordinate for

selected point

Set 𝑧 coordinate to 0, change

state to await input

Left mouse button pressed Awaiting input Change state to rotate view

Mouse move Rotating view Rotate view

Left mouse button pressed Rotating view Stop rotating view

Mouse wheel scroll Any state Zoom in or out

Arrow pressed Any state
Translate view in given

direction

78

Table 2 Keywords

KEYWORD # OF ARGUMENTS FUNCTION

sin 1 sine function
cos 1 cosine function
tan 1 tangens function
asin 1 arcus sine function
acos 1 arcus cosine function
atan 1 arcus tangens function
sinh 1 hyperbolic sine function
cosh 1 hyperbolic cosine
tanh 1 hyperbolic tangens function
asinh 1 hyperbolic arcus sine function
acosh 1 hyperbolic arcus tangens

function
atanh 1 hyperbolic arcur tangens

function
log2 1 logarithm to the base 2
log10 1 logarithm to the base 10
log 1 logarithm to the base 10
ln 1 logarithm to base e

(2.71828...)
exp 1 e raised to the power of x
sqrt 1 square root of a value
sign 1 sign function -1 if x<0; 1 if

x>0
rint 1 round to nearest integer
abs 1 absolute value
min var. min of all arguments
max var. max of all arguments
sum var. sum of all arguments
avg var. mean value of all arguments

79

List 1 Error messages

User tries to save current graphic object, but no one is created.

User tries to use degree elevation or reduction for another object than Bézier arc or patch.

User tries to use degree reduction, but resulting object would be only a point or a curve for

Bézier arc and patch, respectively.

User tries to create affine patch form curve, but not curve is defined.

Text box for defining interval for 𝑢 parameter contains unrecognisable keyword.

Interval for 𝑢 parameter consists of less or more than two separate numbers.

Interval for 𝑢 parameter consists of two numbers with same value.

Text box for defining interval for 𝑣 parameter contains unrecognisable keyword.

Interval for 𝑣 parameter consists of less or more than two separate numbers.

Interval for 𝑣 parameter consists of two numbers with same value.

Text box for defining rotation’s interval contains unrecognisable keyword.

Interval for rotation consists of less or more than two separate number.

Interval for rotation consists of two numbers with same value.

Text box for defining of rotation’s axis contains unrecognisable keyword.

Text box for defining of rotation’s axis does not consist of three separate numbers.

At least one text box for defining curves contains unrecognisable keyword.

At least one of text boxes for defining boundary curves does not consist of three separate

expressions.

Text box for defining 𝑥 coordinate for parametric surface contains unrecognisable keyword.

Text box for defining 𝑥 coordinate for parametric surface contains more than one expression.

Text box for defining 𝑦 coordinate for parametric surface contains unrecognisable keyword.

Text box for defining 𝑦 coordinate for parametric surface contains more than one expression.

Text box for defining 𝑧 coordinate for parametric surface contains unrecognisable keyword.

Text box for defining 𝑧 coordinate for parametric surface contains more than one expression.

Text box for defining parametric curve contains unrecognisable keyword.

Text box for defining parametric curve contains does not consist of three separate expressions.

User tries to change knot vector (by changing knot value, increasing knot multiplicity or

inserting new knot), but operation would result in invalid knot vector.

User tries to increase multiplicity of knot, but knot with specified value do not exist in knot

vector.

User tries to insert knot with value, but knot with that value already has maximum allowed

multiplicity.

User tries to insert knot, but is it not a valid value.

User tries to remove knot with value, but no knot in knot vector has same value.

User tries to specify new vertex for patch via specify point form.

User tries to specify new vertex with zero weight via specify point form.

User tries to modify first or last control point weight to zero via specify point form.

User tries to specify point for patch via specify point form, but no point is selected.

User tries to add new control point either at the end or begging via context menu while patch is

being modelled.

User tries to delete tangent (for clamped splines).

User tries to delete control point, but no one is selected.

User tries to delete control point, tangent or second derivative for Hermite arc.

User tries to delete control point of patch.

User tries to set weight of control point via context menu, but no point is selected.

80

User tries to set weight of first or last control point to zero via context menu.

User tries to set weight of patch control point via context menu, but no control point is selected.

User tries to set multiplicity of control point via context menu, but no point is selected.

User tries to set multiplicity of patch control point via context menu.

User tries to show multiplicity of control point via context menu, but no point is selected.

User tries to show weight of control point or patch control point via context menu, but no point

is selected.

User tries to set spline’s end condition to clamped, but the curve he is working with does not

support this condition.

User clicks on “Coons patch – bicubic” without modelling this type of patch before.

With show illustration points option active, user models Hermite spline with at least one vertex

with multiplicity greater than 1.

User tries to display rational blending functions for rational Bézier or B-spline surface, but

neither one is modelled.

User tries to save an object but there is no object

List 2 Information messages

Message asking user, if he wants to proceed with degree reduction of Bézier arc, when it will

change shape of curve.

Message asking user, if he wants to proceed with degree reduction of Bézier patch, when it will

change shape of patch.

User has defined more control vertices than number needed for cubic or quintic Hermite arc and

excess vertices will be deleted.

User selected other end condition than default or clamped for Bézier spline.

User tries to modify 𝑣 knot vector via knot vector form, but he is working with curves.

User tries to modify multiplicity of patch control point via specify point form.

User tries to modify multiplicity of tangents via specify point form.

User tries to modify weight of tangents via specify point form.

Message displaying multiplicity of control point.

Message that says multiplicity of all patch control points is one.

Message displaying weight of control point.

Message displaying weight of patch control point.

Message saying that tangents’ weight equals one.

Message saying that tangents’ multiplicity equals one.

User tries to select radio button "𝑣" parameter for secondary window, but he is not modelling

patch.

User tries to select radio button “change knots” for secondary window, but he is not working

with spline or patch that uses knot vector.

User tries to select Affine surface from curve but he is not working with affine surfaces.

