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Abstract 
 

The purpose of this work is to create software application, which will be used during lectures  

in Representation of geometric objects. Thus main task for application called Splines & Surfaces is  

to enable user to enter input data and modify arcs, splines, patches and surfaces to accomplish this. We 

mathematically describe these objects, mention their properties and methods for enumeration. Then we 

describe how to modify their shape by modification of knot vector, multiplicity of control points or  

by choice of end condition. Work specifies requirements, goal, and controls for application and data 

model, input, principle of construction, methods for modifying, output and possible errors for each 

graphic object. User’s guide for Splines & Surfaces application is supplied as a part of this work. 

Keywords:  curves, approximation and interpolation splines, surfaces, continuity conditions, software 

application, user’s guide 

 

 

 

Abstrakt 
  

Hlavným účelom tejto práce je vytvorenie softwarovej aplikácie, ktorá bude využívaná  

na prednáškach predmetu Reprezentácia geometrických objektov. Preto je úlohou aplikácie Splines & 

Surfaces umožniť používateľovi zadávať vstupné údaje a modifikovať oblúky, splajny a plochy.  

Tieto geometrické objekty matematicky opíšeme a upozorníme na ich vlastnosti a metódy vyčíslenia. 

Ponúkneme viaceré možnosti modifikovania ich tvaru cez násobné riadiace vrcholy, zmeny v uzlovom 

vektore alebo rôzne okrajové podmnienky. V práci sú uvedené požiadavky, cieľ a ovládanie aplikácie 

a špecifikácie dátového modelu, vstupu, princípu konštrukcie, možnosti modelovania, výstupu 

a moźných chýb pre každý grafický objekt. Súčasťou práce je používateľská príručka k aplikácií Splines 

& Surfaces. 

Kľúčové slová: krivky, aproximačné a interpolačné splajny, plochy, podmienky spojitosti, softwarová 

aplikácia, používateľská prírućka 
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Introduction 
 The presented work harmonises two aspects, mathematical representation of geometric 

objects and manipulation with those objects by means of software application Splines & Surfaces. 

 First chapter focuses on studying planar and spatial curves. It starts from simple arcs - 

Bézier and Hermite, continues through continuity conditions for splines and then presents 

representation of individual spline curves. This includes Hermite spline, cardinal spline, 

approximation and interpolation Bézier spline, Beta spline and B-spline. 

 To further improve control over shape of curve, rational curves are introduced.  

They allow shape modification by changing weights of control points and also represent conic 

sections. 

 Important de Casteljau and de Boor enumeration algorithms for Bézier curve, B-spline 

curves and surfaces are used in Splines & Surfaces to evaluate points on curve or surface. 

 Representation of curves and splines naturally leads to representation of surfaces.  

This includes parametric surfaces, surfaces of revolution and extruded surfaces – affine surfaces, 

surfaces created from boundary curves – Coons patches and surfaces defined by control net – both 

integral and rational Bézier and B-spline surfaces.  

 Essential part of this work is designed and developed software application  

Splines & Surfaces. This application in detail processes individual options for modification  

of geometric objects, which are described in first chapter and other literature concerning CAGD. 

With respect to scope of this work, not all modification options are listed in text, but they  

are implemented in software.  

 Next chapter states and specifies requirements, and defines how it looks and controls  

for developed software application. It describes functions for controlling the application and 

processing input form user and defines data model and specifications for each individual arcs, 

splines and surfaces – input, how is this input processed, output and possible errors. This includes 

all possible ways to modify given object.  

In each case of curve’s visualisation, after defining a sequence of control points and 

specifying type of curve, curve and blending functions are rendered. Blending function define 

shape of curve and its geometric properties. In case of splines choice of end condition is possible 

– either phantom or multiple vertices, by defining vector first derivative at end points or changes 

in knot vector, which can be uniform, open or non-uniform.  

 Application offers variety of options to create a surface. Either creating parametric 

surface, surfaces that is created from parametrically described profile curve or boundary curves 

or surfaces defined by control net. Parameters for these curves and control net can be modified. 

Displayed result is model of surface – representation of biparametric geometric object. 

Third chapter is about implementation of software application Splines & Surfaces.  

It describes important functions for processing input from user, displaying enumerated objects. 

These functions serve as interface between user and hardware. Important content of this chapter 

is class structure. All classes and their methods are described in detail.  
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 Fourth chapter represents user’s guide for software application Splines & Surfaces.  

It describes all options located in menu and icons beneath it and options for modifying graphic 

visualisation. Significant part is dedicated to describing controls and modification of created 

geometric objects. The most important features are illustrated on screenshots from application. 

 The goal of software application Splines & Surfaces is visualisation of certain curves and 

surfaces in CAGD, which are examined in lecture in Representation of geometric objects [1], 

which belongs to bachelor degree of education on our university. 
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1. Chapter – Curve and Surface representation 
 We can represent curves and surfaces in three different ways: explicitly, implicitly and 

parametrically. 

“Explicit representations of the form 𝑦 = 𝑓(𝑥), although useful in many applications, are 

axis dependent, cannot adequately represent multiple-valued functions, and cannot be used where 

a constraint involves an infinite derivative. Hence, they are little used in computer graphics  

or computer aided design.“[2] 

“Implicit representations of the form 𝑓(𝑥, 𝑦) = 0 and 𝑓(𝑥, 𝑦, 𝑧) = 0  for curves and 

surfaces, respectively, are capable of representing multiple-valued functions but are still axis 

dependent. However, they have a variety of uses in computer graphics and computer aided 

design.“[2]  

 The most important curve and surface representation for this work and computer graphics 

at all is parametric representation. For curves it has form  

𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡) 

where 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) are arbitrary functions and 𝑡 is parameter from given interval. It can 

represent multi-valued functions and this representation is independent of choice of coordinate 

axes. Values of 𝑥, 𝑦 and  𝑧 designate coordinates of a point on the curve or surface. We will use 

Cartesian coordinate system and define position vector as 

𝑃(𝑡) =  (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) 

 In this chapter we will first describe integral and then rational curves and surfaces. 

1.1. Arcs 

 The simplest curve, or arc, is a straight line segment, given by equation  

𝑐(𝑡) =  𝑉0 + 𝑡(𝑉1 − 𝑉0) 

where 𝑡 ∈ [0,1], 𝑐(𝑡) is a position vector and 𝑉0 and 𝑉1 are two different points in space. This 

curve has degree of one.  

1.1.1. Bézier arc  

Bézier curve is probably the best known curve model. Bézier curve of degree 𝑛 is defined 

by sequence of 𝑉0, … , 𝑉𝑛  points in space. These points are called control points and define control 

polygon. We can define Bézier curve of degree 𝑛 as  

𝑐(𝑡) =  ∑  𝐵𝑖
𝑛(𝑡)𝑉𝑖

𝑛

𝑖=0

 

where 𝑡 ∈ [0, 1], 𝑉𝑖 stands for 𝑖–th control point and 𝐵𝑖
𝑛(𝑡) is 𝑖–th Bernstein polynomial of 

degree 𝑛. (Figure 1-1) 
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Figure 1-1 Bernstein polynomials and Bézier arc for degree 𝑛 = 3 

Bézier curve uses Bernstein polynomials as blending functions, which are defined  

for degree of 𝑛 as  

𝐵𝑖
𝑛(𝑡) =  {

(
𝑛
𝑖
) 𝑡𝑖  (1 − 𝑡)𝑛−𝑖 𝑖 = 0,… , 𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Bernstein polynomials have a number of properties:  

 Non-negativity: 

𝐵𝑖
𝑛(𝑡) ≥ 0, 𝑡 ∈ [0,1] 

 Symmetry:  

𝐵𝑖
𝑛(𝑡) =  𝐵𝑛−𝑖

𝑛 (1 − 𝑡), 𝑖 = 0,… , 𝑛 

 Partition of unity:  

∑𝐵𝑖
𝑛(𝑡) = 1,

𝑛

𝑖=0

𝑡 ∈ [0,1] 

 Maximum: 𝐵𝑖
𝑛(𝑡) has exactly one maximum on interval [0, 1] at 𝑡 =

𝑖

𝑛
. 

 Basis: 𝐵𝑖
𝑛(𝑡) form basis for polynomials of degree 𝑛. 

 Recursion:  

𝐵𝑖
𝑛(𝑡) = (1 − 𝑡) 𝐵𝑖

𝑛−1(𝑡) + 𝑡 𝐵𝑖−1
𝑛−1(𝑡), 𝑖 = 0,… , 𝑛 

𝐵−1
𝑛−1(𝑡) = 𝐵𝑛

𝑛−1(𝑡) = 0 

 Derivative:  

𝑑

𝑑𝑡
 𝐵𝑖
𝑛(𝑡)  =  𝑛 (𝐵𝑖−1

𝑛−1(𝑡)  −   𝐵𝑖
𝑛−1(𝑡)) , 𝑖 = 0,… , 𝑛 

 Integral:  

∫  𝐵𝑖
𝑛(𝑡)

1

0

𝑑𝑡 =  
1

𝑛 + 1
, 𝑖 = 0,… , 𝑛 

Proofs of these properties can be found in [5] and [9]. 

Properties of Bézier curves are [1]: 

 Bézier curve 𝑐(𝑢) generally follows shape of the control polygon 𝑉𝑖, 𝑖 = 0,… , 𝑛. 

 Endpoint interpolation property: Curve interpolates points 𝑉0 and 𝑉𝑛 

𝑐(0) = 𝑉0 

𝑐(1) = 𝑉𝑛 



5 

 

 Convex hull property: Every point of Bézier curve lies inside the convex hull of its 

defining control points. 

 Symmetry property:  

∑𝐵𝑖
𝑛(𝑡)𝑉𝑖 

𝑛

𝑖=0

= ∑𝐵𝑖
𝑛(1 − 𝑡)𝑉𝑛−𝑖

𝑛

𝑖=0

  

 Shape of curve does not change if we reverse order in control points’ sequence and 

parameter 𝑡 will change its value from 1 to 0. 

 Invariance under parameter transformation:  

∑𝐵𝑖
𝑛(𝑡)𝑉𝑖 

𝑛

𝑖=0

= ∑𝐵𝑖
𝑛 (
𝑢 − 𝑎

𝑏 − 𝑎
)𝑉𝑖

𝑛

𝑖=0

 

for 𝑡 ∈ [0, 1] and 𝑢 ∈ [𝑎, 𝑏]. 

 Invariance under affine transformation:   

𝑇(𝑐(𝑡)) = 𝑇 (∑𝐵𝑖
𝑛(𝑡)𝑉𝑖 ) 

𝑛

𝑖=0

) = ∑𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

𝑇(𝑉𝑖)  

where 𝑇 is an affine transformation. 

 Variation diminishing property: Intersection of control polygon and any hyperplane 

creates at least same number of points of intersection as intersection of that hyperplane 

and Bézier curve. 

 Pseudo local control property: Bézier curves cannot be locally modified. Each change  

of position even of only one control vertex changes whole curve. By moving vertex 𝑉𝑖, 

the largest change in shape occurs for parametric values close to 𝑡 = 𝑖 𝑛⁄ . 

 Derivatives [10]:  

𝑑𝑘

𝑑𝑡𝑘
𝑐(𝑡) =  𝑛 ∙∙∙ (𝑛 − 𝑘 + 1)∑  𝐵𝑖

𝑛−𝑘(𝑡) ∆𝑘  𝑉𝑖

𝑛−𝑘

𝑖=0

 

 where ∆𝑘 𝑉𝑖 is a vector defined recursively as 

∆0𝑉𝑖 = 𝑉𝑖 

∆1 𝑉𝑖 = 𝑉𝑖+1 − 𝑉𝑖 

∆𝑘  𝑉𝑖 = ∆
1(∆𝑘−1 𝑉𝑖)  

Now we can obtain tangents at endpoints  

𝑑

𝑑𝑡
𝑐(0) =  𝑛(𝑉1 − 𝑉0) 

𝑑

𝑑𝑡
𝑐(1) =  𝑛(𝑉𝑛 − 𝑉𝑛−1) 
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 Degree elevation [10]: Because 𝑐(𝑢) is a polynomial function of degree 𝑛, we can express 

it as polynomial of degree 𝑛 + 1. Thus   

∑𝐵𝑖
𝑛(𝑡)𝑉𝑖 

𝑛

𝑖=0

= ∑𝐵𝑖
𝑛+1(𝑡)𝑊𝑖

𝑛+1

𝑖=0

 

where 𝑊𝑖 are control new points determined by equations  

𝑊0 = 𝑉0 

𝑊𝑖 = 
𝑖

𝑛 + 1
𝑉𝑖−1 + (1 − 

𝑖

𝑛 + 1
)𝑉𝑖, 𝑖 = 1,… , 𝑛 

𝑊𝑛+1 = 𝑉𝑛 

This operation is called degree elevation and can be useful for more precise control  

of curve’s shape.  

 Degree reduction [10]: Reversing of degree elevation is called degree reduction. Because 

in general it is not possible to represent polynomial of degree 𝑛 by polynomial of degree 

𝑛 − 1, we are only approximating shape of original curve. Exact representation  

of the same curve with decreased degree is possible only in the case when degree was 

elevated beforehand. Let 𝑊𝑖 , 𝑖 = 0,… , 𝑛 + 1 be control points of Bézier curve of degree 

𝑛 + 1. We construct two sequences of new control points 𝐴𝑖 and 𝐵𝑖. 

𝐴𝑖 = 
𝑛 + 1

𝑛 + 1 − 𝑖
 𝑊𝑖 − 

𝑖

𝑛 + 1 − 𝑖
 𝐴𝑖−1, 𝑖 = 0,… , 𝑛 

𝐵𝑖 = 
𝑛 + 1

𝑖 + 1
 𝑊𝑖+1 − 

𝑛 − 𝑖

𝑖 + 1
 𝐵𝑖+1, 𝑖 = 𝑛, … , 0 

𝑉𝑖 = (1 − 𝛼𝑖) 𝐴𝑖 + 𝛼𝑖  𝐵𝑖, 𝑖 = 0,… , 𝑛 

Now we have to blend these two sequences together to obtain control points for Bézier 

curve of degree 𝑛. There are multiple ways how to blend them, most intuitive is to choose 

𝛼𝑖 = 
𝑖

𝑛
. We define Bézier curves defined by control polygons 𝐴0, … , 𝐴𝑛 and 𝐵0, … , 𝐵𝑛, 

as 𝐴(𝑡) and 𝐵(𝑡), respectively. 

“This method obviously has serious inaccuracies, particularly in the middle range  

(as could be anticipated from the above discussion which indicated that both 𝐴(𝑡) and 

𝐵(𝑡) were most satisfactory near their starting points). We look to Matthias Eck  

for a refinement of reverse-elevation method.” [6] 

We minimise this error by constructing new control vertices by using “left” half of 𝐴𝑖 and 

the “right” half of 𝐵𝑖 

𝑉𝑖 = (1 − 𝛼𝑖)𝐴𝑖 + 𝛼𝑖 𝐵𝑖 , 𝑓𝑜𝑟 𝑖 = 0,… , 𝑛, 𝛼𝑖 = 

{
 
 

 
 0 𝑖𝑓 𝑖 <

𝑛

2
1

2
𝑖𝑓 𝑖 =

𝑛

2

1 𝑖𝑓 𝑖 >
𝑛

2
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Another approach is to define 𝛼𝑖 as in [6] 

𝛼𝑖 = 2
1−2𝑛 ∙∑(

2𝑛

2𝑗
)

𝑖

𝑗=0

, 𝑖 = 0,… , 𝑛 − 1 

Control points obtained by this method minimise error function 

𝑑(𝑊, 𝑉) = max {|𝑊(𝑡) − 𝑉(𝑡)|, 𝑡 ∈ [0,1]} 

where 𝑊(𝑡) and 𝑉(𝑡) are Bézier curves defined by control polygons 𝑊0, …𝑊𝑛+1 and 

𝑉0, …𝑉𝑛, respectively. 

 Enumeration of Bézier curves is mostly done by de Casteljau algorithm. It is based  

on recursive definition of Bernstein polynomials  

𝐵𝑖
𝑛(𝑡) = (1 − 𝑡) 𝐵𝑖

𝑛−1(𝑡) + 𝑡 𝐵𝑖−1
𝑛−1(𝑡), 𝑖 = 0,… , 𝑛 

We start by defining   

𝑣𝑖
0(𝑡) =  𝑉𝑖, 𝑖 = 0,… , 𝑛 

 Then we compute points 

𝑣𝑖
𝑘(𝑡) = (1 − 𝑡) 𝑣𝑖

𝑘−1(𝑡) + 𝑡 𝑣𝑖+1
𝑘−1(𝑡), 𝑘 = 1,… , 𝑛, 𝑖 = 0,… , 𝑛 − 𝑘 

In the last step we obtain point 

𝑣0
𝑛(𝑡) = 𝑐(𝑡) 

which lies on curve and it is the same point that we will obtain if we enumerate 𝑐(𝑡). 

Degree elevation can be also use to rasterize Bézier curve, as new vertices are 

approximating original control polygon. However this approximation is very slow compared 

to subdivision. This approach divides curve in two ones in such a way, that these two new curves 

joined together form original curve. Both of these curves are again Bézier curves of same degree 

as initial curve, so we can repeat subdivision process as many times as we need. 

 It can be proved that control vertices for these new curves are points obtained from  

de Casteljau algorithm. Vertices for first curve are  𝑣0
0, … , 𝑣0

𝑛 and for second curve 𝑣0
𝑛, … , 𝑣𝑛

0. 

Subdivision mostly occurs at 𝑡 = 1 2⁄   and for rough idea how the curve looks like two 

subdivisions are sufficient for planar curve and three for curve in space. Otherwise we terminate 

subdivision process when the length of longest line segment is smaller than specified constant. 

This is also a way to model more complex curves that need more control vertices.  

 Modelling Bézier curves can be done only by moving control points in space, or changing 

multiplicity of these points.  

1.1.2. Hermite arc 

Cubic Hermite arc is determined by two control points 𝑉0, 𝑉1 and two tangents at these 

points 𝑞0⃗⃗⃗⃗  and 𝑞1⃗⃗⃗⃗ . Formal definition as in [1] is 
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𝑐(𝑡) =  𝐻0
3(𝑡)𝑉0 + 𝐻1

3(𝑡)𝑞0⃗⃗⃗⃗ +  𝐻2
3(𝑡)𝑞1⃗⃗⃗⃗ + 𝐻3

3(𝑡)𝑉1 

where 𝑡 ∈ [0, 1]. (Figure 1-2) Blending functions 𝐻𝑖
3(𝑡), 𝑖 = 0, 1,2, 3 are called Hermite cubic 

polynomials. These functions can be derived from cubic Bernstein polynomials as 

𝐻0
3(𝑡) =  𝐵0

3(𝑡) + 𝐵1
3(𝑡) = 1 − 3𝑡2 + 2𝑡3 

𝐻1
3(𝑡) =  

1

3
𝐵1
3(𝑡) =  𝑡 − 2𝑡2 + 𝑡3 

𝐻2
3(𝑡) =  −

1

3
𝐵2
3(𝑡) = −𝑡2 + 𝑡3 

𝐻3
3(𝑡) =  𝐵2

3(𝑡) + 𝐵3
3(𝑡) = 3𝑡2 − 2𝑡3 

as in [3]. Cubic Hermite polynomials have following properties: 

𝐻𝑖
3(𝑡) ≥ 0, 𝑖 = 0,1,3,𝐻2

3(𝑡) ≤ 0, 𝑡 ∈ [0, 1] 

𝐻0
3(𝑡) + 𝐻3

3(𝑡) = 1 

𝐻0
3(0) = 𝐻3

3(1) = 𝐻1
3´(0) = 𝐻2

3´(1) = 1 

𝐻0
3(1) = 𝐻3

3(0) = 𝐻1
3´(1) = 𝐻2

3´(0) = 0 

𝐻1
3(0) = 𝐻1

3(1) = 𝐻2
3(0) = 𝐻2

3(1) = 0 

𝐻0
3´(0) = 𝐻3

3´(1) = 𝐻0
3´(1) = 𝐻3

3´(1) = 0 

 It can be shown using these properties that cubic Hermite curve interpolates both control 

points and its tangents at these points are equal to 𝑞0⃗⃗⃗⃗  and 𝑞1⃗⃗⃗⃗ .  

 

Figure 1-2 Cubic Hermite polynomials and Hermite arc 

We can also define quintic Hermite curve for two control vertices, two tangents 𝑞0⃗⃗⃗⃗ , 𝑞1⃗⃗⃗⃗  

and two second derivatives r0⃗⃗  ⃗ and  r1⃗⃗  ⃗ at these points as 

𝑐(𝑡) =  𝐻0
5(𝑡)𝑉0 +𝐻1

5(𝑡)𝑞0⃗⃗⃗⃗ +  𝐻2
5(𝑡)r0⃗⃗  ⃗ + 𝐻3

5(𝑡)𝑟1⃗⃗⃗  + 𝐻1
5(𝑡)𝑞1⃗⃗⃗⃗ + 𝐻5

5(𝑡)𝑉1 

where 𝑡 ∈ [0, 1] and 𝐻𝑖
5(𝑡), 𝑖 = 0,… , 5 are quintic Hermite polynomials. (Figure 1-3) They can 

be derived from Bernstein polynomials of degree 5 by equations 

𝐻0
5(𝑡) =  𝐵0

5(𝑡) + 𝐵1
5(𝑡) + 𝐵2

5(𝑡) 
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𝐻1
5(𝑡) =  

1

5
(𝐵1

5(𝑡) + 2𝐵2
5(𝑡)) 

𝐻2
5(𝑡) =

1

20
𝐵2
5(𝑡) 

𝐻3
5(𝑡) =

1

20
𝐵3
5(𝑡) 

𝐻4
5(𝑡) = −

1

5
(2𝐵3

5(𝑡) + 𝐵4
5(𝑡)) 

𝐻5
5(𝑡) =  𝐵3

5(𝑡) + 𝐵4
5(𝑡) + 𝐵5

5(𝑡) 

as in [3]. This curve interpolates both control points, first derivatives at these points are 𝑞0⃗⃗⃗⃗  and 

𝑞1⃗⃗⃗⃗  and second derivatives r0⃗⃗  ⃗ and  r1⃗⃗  ⃗. 

  

Figure 1-3 Quintic Hermite polynomials and Hermite arc 

For calculating point on given curve we can simply calculate value of 𝑐(𝑡) or we use 

Horner’s scheme. It is based on gradual factorisation and consists of 𝑛 steps for polynomial  

of degree 𝑛. Each step includes one multiplication and one summation.  

Modelling Hermite arc can be done via changing position of one or both control points. 

We can also change orientation and magnitude of tangents and in case of quintic arc also vectors 

for second derivative. 

1.2. Splines 

 Working with curves of high order is not appropriate for tasks such as modelling or 

interpolation, because single change in even one control point results in change of whole curve. 

Instead a spline curve is used. It has various uses in mathematics, informatics, CAD, 

approximation theory, design and many others. Splines are divided into two major groups, 

interpolation and approximation splines. Interpolation splines are generally used for image 

digitalization or describing animation paths and approximation splines for designing  

and modelling. 

Spline is a piecewise curve formed by number of segments. These segments itself are 

curves of different types. They are joined at joining points and continuity at these points can be 

changed to suit our needs. General definition of spline curve in 𝑛 dimensional space is  

𝑠(𝑢) ∶  [𝑎, 𝑏]  → ℝ𝑛 
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where 𝑢 ∈ [𝑎, 𝑏] and this interval is composed of subintervals [𝑢𝑖, 𝑢𝑖+1] such that 𝑎 = 𝑢0  <

 𝑢1 < ⋯ <  𝑢𝑛−1  < 𝑢𝑛 = 𝑏. We call parameter 𝑢 global parameter and local parameter 𝑡 ∈

[0,1] is defined as 

𝑡 =  
𝑢 − 𝑢𝑖
𝑢𝑖+1 − 𝑢𝑖

 

Each subinterval has its length denoted by ∆𝑖= 𝑢𝑖+1 − 𝑢𝑖. Restriction of spline 𝑠 on interval 

[𝑢𝑖, 𝑢𝑖+1] is segment 

𝑠𝑖 ∶ [𝑢𝑖, 𝑢𝑖+1] → ℝ𝑛 

so that 

𝑠(𝑢) =  𝑠𝑖(𝑡) 

where 𝑢 ∈ [𝑢𝑖, 𝑢𝑖+1], 𝑡 ∈ [0,1] and maximum degree of individual segments equals degree  

of spline. Points that satisfy equations 𝑠𝑖 (𝑢𝑖+1) =  𝑠𝑖+1 (𝑢𝑖+1) are called joining points. If each 

subinterval has equal length, for example 𝑢𝑖 = 𝑖 𝑛⁄ , then we call spline uniform, otherwise it is 

non-uniform spline.  

1.2.1. Continuity conditions for splines  

 We distinguish two types of continuity, parametric and geometric continuity. Firstly, we 

examine parametric continuity. 𝐶0 means that position vector for points on curve changes 

smoothly along whole curve. For two given two curve segments 𝑠𝑖 and 𝑠𝑖+1 on intervals [𝑢𝑖, 𝑢𝑖+1] 

and [𝑢𝑖+1, 𝑢𝑖+2], respectively, we define 𝐶0continuity as  𝑠𝑖 (𝑢𝑖+1) =  𝑠𝑖+1 (𝑢𝑖+1). General 

definition of 𝐶𝑛 continuity requires fulfilling 𝐶𝑛−1continuity conditions and thus  

𝑠𝑖
(𝑛)
(𝑢𝑖+1) =   𝑠𝑖+1

(𝑛)
 (𝑢𝑖+1). In practice, 𝐶1and 𝐶2 continuity are mostly used. 𝐶1  continuity 

ensures that tangent vector at point corresponding to 𝑢 = 𝑢𝑖+1 is the same for both segments and 

thanks to 𝐶2 continuity curvature of curve changes smoothly. Example from real life for 𝐶2 

continuity can be path of an object, which should move with without discontinuous changes in 

position, speed and acceleration, otherwise it will look unnatural.  

 Geometric continuity is less demanding. 𝐺0 stays the same as 𝐶0 but 𝐺1 is different. 

It requires 𝐺0 continuity and condition 𝑠𝑖+1´ (𝑢𝑖+1) =  𝛽1 𝑠𝑖´ (𝑢𝑖+1)  where 𝛽1  > 0 must be 

fulfilled. So tangent vector  at 𝑢 = 𝑢𝑖+1 needs to be only positive scalar multiple of tangent vector 

of another segment at the same point. For 𝐺2 continuity curve must satisfy 𝐺1 continuity and 

following equation 𝑠𝑖´´ (𝑢𝑖+1) =  𝛽1
2𝑠𝑖+1´´ (𝑢𝑖+1) + 𝛽2 𝑠𝑖+1´ (𝑢𝑖+1) where 𝛽2  ∈ 𝑅. 

 “Although many application find 𝐺1 continuity adequate, for applications that depend  

on the fairness or smoothness of a curve or surface, especially those that depend on a smooth 

transition of reflected light, e.g., automobile bodies, 𝐺1 or even 𝐺2 continuity is not adequate. 

For these applications, at least 𝐶2 continuity is required to achieve the desired results.” [4] 

 Most splines usually leave some degree of freedom for user to modify shape of curve  

by changing end conditions, which can be defined in various ways, for example: 

 Clamped splines has fixed tangent vector at the end points. 

𝑠0´ (𝑢0) =  𝑞0⃗⃗⃗⃗ , 𝑠𝑛−1´ (𝑢𝑛) =  𝑞𝑛⃗⃗⃗⃗  
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 Natural or relaxed spline has zero curvature at the end points. 

𝑠0´´ (𝑢0) =  0⃗ , 𝑠𝑛−1´´ (𝑢𝑛) =  0⃗  

 Cyclic spline has equal first and second derivatives at the end points. 

𝑠0´ (𝑢0) =  𝑠𝑛−1´(𝑢𝑛), 𝑠0´´ (𝑢0) =  𝑠𝑛−1´´ (𝑢𝑛) 

 Acyclic spline has equal but opposite derivatives at the end points. 

𝑠0´ (𝑢0) =  − 𝑠𝑛−1´ (𝑢𝑛), 𝑠0´´ (𝑢0) =  − 𝑠𝑛−1´´ (𝑢𝑛) 

 Quadratic condition for splines is defined as equality of second derivative at first two and 

last two points.  

𝑠0´´ (𝑢0) =  𝑠1´´ (𝑢1), 𝑠𝑛−2´´ (𝑢𝑛−1) =  𝑠𝑛−1´´ (𝑢𝑛) 

1.2.2. Cubic Hermite spline 

 Cubic Hermite spline is a spline composed from cubic Hermite arcs, so it is interpolation 

spline by its definition [1]. For given control points  𝑉0, … , 𝑉𝑘 , 𝑘 ≥ 2, we need to calculate tangents 

at these points in order to construct 𝐶2 continuous spline. Formal definition of 𝑖-th segment is 

𝑠𝑖(𝑢) =  𝐻0
3(𝑡)𝑉𝑖 + 𝐻1

3(𝑡)𝑞𝑖⃗⃗  ⃗ +  𝐻2
3(𝑡)𝑞1⃗⃗⃗⃗ + 𝐻3

3(𝑡)𝑉𝑖+1, 𝑖 = 0,… , 𝑘 − 1  

where 𝑢 ∈ [𝑎, 𝑏], 𝑡 =  
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
 and 𝐻𝑖

3(𝑡), 𝑖 = 0,1,2,3 are cubic Hermite blending functions. 

(Figure 1-4) 

After expanding equations 𝑠𝑖´´ (1) =  𝑠𝑖+1´´ (0), we obtain system of 𝑘 − 1 equations  

for 𝑘 + 1 variables. In order to solve this system we choose one end condition. Then it is possible 

to find all tangents and compute each Hermite segment.   

 Hermite spline is also called global spline, because each change of control vertices 

modifies whole curve. We describe this property of spline as not having local control. Another 

way to modify this kind of spline is to change end condition. 

 

Figure 1-4 Relaxed Hermite spline 

1.2.3. Cardinal spline 

Cardinal spline is a modification of Hermite spline, in which all tangent vectors at control 

points are defined by adjacent points [1]. Because of this, we do not have to choose end condition. 

Again, let 𝑉0, … , 𝑉𝑘 , 𝑘 ≥ 3 be sequence of points in space and we want to interpolate these vertices 

with Hermite cubic spline. Cardinal spline segment can we expressed as  
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𝑠𝑖(𝑢) =  ∑ 𝐶𝑗(𝑡)𝑉𝑖+1+𝑗

2

𝑗=−1

, 𝑖 = 0,… , 𝑘 − 3  

where 𝑢 ∈ [𝑎, 𝑏], 𝑡 =  
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
 and 𝐶𝑗(𝑡), 𝑗 = −1,0,1,2 are cardinal blending functions.  

(Figure 1-5) 

Each Hermite cubic spline segment is defined by two points and two tangent vectors  

at these points. We define tangent vector 𝑞𝑖⃗⃗  ⃗ = 𝑠 (𝑉𝑖+1 − 𝑉𝑖−1), 𝑠 > 0, so now each segment is 

defined for foursome of points  𝑉𝑖−1𝑉𝑖𝑉𝑖+1𝑉𝑖+2. Parameter 𝑠 is called proportional coefficient as 

its value represents ratio of magnitude of tangent vector 𝑞𝑖⃗⃗  ⃗ and length of line segment between 

𝑉𝑖−1 and  𝑉𝑖+1. Now we define cardinal blending function 𝐶𝑖(𝑡), 𝑖 =  −1, 0, 1, 2, as 

𝐶−1(𝑡) =  −𝑠𝑡 + 2𝑠𝑡
2 − 𝑠𝑡3 

𝐶0(𝑡) =  1 + (𝑠 − 3)𝑡
2 + (2 − 𝑠)𝑡3 

𝐶1(𝑡) =  𝑠𝑡 + (3 − 2𝑠)𝑡
2 + (𝑠 − 2)𝑡3 

𝐶2(𝑡) =  −𝑠𝑡
2 + 𝑠𝑡3 

 

Figure 1-5 Cardinal polynomials and spline with double endpoints for 𝑠 = 1,6 

These functions have property of partition of unity and cardinal spline is 𝐶0and 𝐶1 

continuos, but conditions for 𝐶2 nor 𝐺2continuity are not fulfilled.  

Cardinal spline interpolates vertices 𝑉𝑖, 𝑖 = 1,… , 𝑘 − 1. Points 𝑉0 and 𝑉𝑘 are free ends 

of curve. We can interpolate these free ends in two ways. First method is called multiple vertices. 

We add two vertices 𝑉−1 = 𝑉0 and 𝑉𝑘+1 = 𝑉𝑘, so we can create two new curve segment  

for points 𝑉−1𝑉0𝑉1𝑉2 and 𝑉𝑘−2𝑉𝑘−1𝑉𝑘𝑉𝑘+1.  

Following method give us better options for modelling shape of curve. This one is called 

phantom vertices, because we once again add two vertices 𝑉−1 and 𝑉𝑘+1 but this time position  

of these vertices is not fixed. For clamped spline we have given first derivatives at end points so 

we can express 𝑉−1 and 𝑉𝑘+1 as 

𝑉−1 =  𝑉0 − 
1

𝑠
 𝑞0⃗⃗⃗⃗  

𝑉𝑘+1 = 𝑉𝑘 + 
1

𝑠
 𝑞𝑘⃗⃗⃗⃗  
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In case of relaxed spline second derivatives at end points are equal to zero vector. 

Equation for new phantom points are  

𝑉−1 =  𝑉1 − 
3

2𝑠
 (𝑉1 − 𝑉0) + 

1

2
(𝑉2 − 𝑉0) 

𝑉𝑘+1 = 𝑉𝑘−1 + 
3

2𝑠
 (𝑉𝑘 − 𝑉𝑘−1) + 

1

2
(𝑉𝑘 − 𝑉𝑘−2) 

Modelling cardinal spline is done mostly by changing proportional coefficient 𝑠, which 

is global parameter, as change in its value modify tension and thus shape of whole curve. This 

can cause undesirable changes in shape of curve mainly if distance between adjacent control 

points are significantly different. Raising value of 𝑠 causes curve to deviate less from tangent 

vectors. These curve has low tension and can create loops. Splines with lower values of 𝑠 deviate 

more from tangent vector and the largest deviation occurs a 𝑠 = 0, when spline segment 𝑠𝑖 is line 

segment  𝑉𝑖 𝑉𝑖+1. We define tension parameter 𝑇 as 𝑠 =  (1 − 𝑇) 2⁄   so  𝑇 = 1 − 2𝑠. Spline  

with proportional coefficient 𝑠 =  1 2⁄  has tension 𝑇 = 0 so it is called a spline with zero tension 

or Catmull-Romm spline or Overhauser spline.  

1.2.4. Bézier spline 

 Bézier spline is a curve, which is composed of Bézier curve segments and can be 

constructed both as interpolation and approximation spline. We assume these segments are cubic 

and are joined together to be 𝐶2 continuous.  

Definition of Bézier spline 𝑠 of degree 𝑛 for points  𝑉0, … , 𝑉𝑘 , 𝑘 ≥ 2 as in [5] is 

𝑠𝑖(𝑢) =  ∑𝐵𝑗
𝑛(𝑡)𝑉𝑖,𝑗

𝑛

𝑗=0

, 𝑖 = 0,… , 𝑘 − 1 

where 𝑢 ∈ [𝑎, 𝑏], 𝑡 =  
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
, 𝑉𝑖,𝑗 are control points and 𝐵𝑗

𝑛(𝑡) is 𝑗-th Bernstein polynomial  

of degree 𝑛. Algorithm for constructing new control points 𝑉𝑖,𝑗 depends on type of spline.  

(Figure 1-6) 

  

Figure 1-6 Approximation and interpolation cubic Bézier spline 

Assume that we have 𝑖-th cubic Bézier curve segment 𝑠𝑖 defined with control points 

𝑉𝑖, 𝑉𝑖+1, 𝑉𝑖+2, 𝑉𝑖+3 and we want to add 𝑖 + 1-th segment 𝑠𝑖+1 with control vertices 

𝑉𝑖+4, 𝑉𝑖+5, 𝑉𝑖+6, 𝑉𝑖+7, such that the two curves will be 𝐶2 continuous. By solving continuity 

conditions we obtain equations for control points of 𝑖 + 1-th segment as in [1]: 

 𝐶0 continuity: 
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𝑠𝑖(𝑢𝑖+1) =  𝑠𝑖(𝑢𝑖+1) 

and thus  

𝑉𝑖+3 = 𝑉𝑖+4 

 𝐶1 continuity: 

𝑉𝑖+5 = 𝑉𝑖+3 +
∆𝑖+1
∆𝑖

(𝑉𝑖+3 − 𝑉𝑖+2) 

and thus 𝑟𝑎𝑡𝑖𝑜(𝑉𝑖+2, 𝑉𝑖+3, 𝑉𝑖+5) =
∆𝑖

∆𝑖+1
.  

 𝐶2 continuity: We need to construct point 𝐷𝑖 

𝐷𝑖 = 𝑉𝑖+2 + 
∆𝑖+1
∆𝑖

(𝑉𝑖+2 − 𝑉𝑖+1) 

for which 𝑟𝑎𝑡𝑖𝑜(𝑉𝑖+1, 𝑉𝑖+2, 𝐷𝑖) =
∆𝑖

∆𝑖+1
= 𝑟𝑎𝑡𝑖𝑜(𝐷𝑖, 𝑉𝑖+5, 𝑉𝑖+6) thus point 𝐷𝑖 is  

an intersection of  lines defined by 𝑉𝑖+1, 𝑉𝑖+2 and 𝑉𝑖+5, 𝑉𝑖+6. We use it in computation 

of control point 

𝑉𝑖+6 = 𝑉𝑖+5 +
∆𝑖+1
∆𝑖

(𝑉𝑖+5 − 𝐷𝑖) 

Vertex 𝑉𝑖+7 can be positioned freely without compromising 𝐶2 continuity. If ∆𝑖 is constant 

for 𝑖 = 0,… , 𝑘 − 1 then equations for control vertices 𝑉𝑖+4, 𝑉𝑖+5 and 𝑉𝑖+6 are simplified to 

𝑉𝑖+5 = 𝑉𝑖+3 + (𝑉𝑖+3 − 𝑉𝑖+2) 

𝑉𝑖+6 = 𝑉𝑖+5 + (𝑉𝑖+5 −  𝐷) = 𝑉𝑖+1 + 4(𝑉𝑖+3 − 𝑉𝑖+2) 

Use of Bézier approximation spline is generally better approach than constructing single 

Bézier curve of high degree, mainly because this single curve does not approximate control 

vertices very well.  

 In this case, points 𝑉𝑖,𝑗 are derived from control polygon formed by vertices 𝑉0, … , 𝑉𝑘.  

In this work we use cubic Bézier spline, so 𝑛 = 3, and ∆𝑖= 1, 𝑖 = 0, … , 𝑘 − 1. We divide each 

line segment 𝑉𝑖𝑉𝑖+1 by points 𝑉𝑖,𝑗 so 𝑟𝑎𝑡𝑖𝑜(𝑉𝑖, 𝑉𝑖,1, 𝑉𝑖,2) = 𝑟𝑎𝑡𝑖𝑜(𝑉𝑖,1, 𝑉𝑖,2, 𝑉𝑖+1) = 1. Now we 

have to define position of vertices 𝑉𝑖,0 and 𝑉𝑖,3 to position suitable for securing 𝐶2 continuity.  

 If 𝑖 = 0 or 𝑖 = 𝑘 − 1, we set 𝑉𝑖,0 = 𝑉0 or 𝑉𝑖,3 = 𝑉𝑘, respectively. In order to secure 𝐶0 

continuity at joining points we have to set 𝑉𝑖,3 = 𝑉𝑖+1,0. 𝐶1 continuity will hold if  

𝑉𝑖,3 = 𝑉𝑖+1,0 =
1

2
𝑉𝑖,2 +

1

2
𝑉𝑖+1,1 

Finally from 𝐶2 continuity we have  

𝑉𝑖+1,2 = 𝑉𝑖+1,1 + (𝑉𝑖+1,1 − 𝑉𝑖) 
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where 𝑉𝑖 = 𝐷𝑖. 

 In the case of interpolation Bézier spline it is little more complicated. Once again let  

𝑛 = 3 be degree of spline and ∆𝑖= 1, 𝑖 = 0,… , 𝑘 − 1. First we need to compute coordinates  

of points 𝐷𝑖. We do it by expanding equations 𝑠𝑖´´ (1) =  𝑠𝑖+1´´ (0) and obtaining linear system 

of 𝑘 − 1 equations for 𝑘 + 1 variables. We need to specify points 𝑉0,1 and 𝑉𝑘−1,2 via end 

condition.  

Now points 𝐷𝑖 are known and we use same procedure for computing points  𝑉𝑖,𝑗 as before, 

but now with input consisting of points  𝐷𝑖. Then have to change position of points 𝑉𝑖,0 and 𝑉𝑖,3 

(which now have same coordinates as 𝐷0 and 𝐷𝑘) to 

𝑉𝑖,0 = 𝑉0, 𝑉𝑖,3 = 𝑉𝑘 

in order to interpolate these vertices. 

 We rasterize Bézier spline with de Casteljau algorithm. Each segment has its own control 

polygon and we use its control points for algorithm.  

Approximation Bézier spline is a spline with local control. Change in position of control 

point 𝑉𝑖 modifies 𝑖 − 2, 𝑖 − 1, 𝑖 and 𝑖 + 1-th segments. Interpolation Bézier spline is a global one. 

1.2.5. Beta-Spline 

 Beta spline is a cubic curve on a given sequence of control vertices 𝑉0, … , 𝑉𝑘, 𝑘 ≥ 4    

in space composed of segments defined in [1] as  

𝑠𝑖(𝛽1, 𝛽2, 𝑡) =  ∑𝑄𝑗(𝛽1, 𝛽2, 𝑡)

3

𝑗=0

𝑉𝑖+𝑗, 𝑖 = 0,… , 𝑘 − 3 

where 𝑢 ∈ [𝑎, 𝑏], 𝑡 =  
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
. (Figure 1-7) Blending functions 𝑄𝑗(𝛽1, 𝛽2, 𝑡) are defined in a way 

to secure 𝐺2 continuity for a whole curve in [5] as 

𝑄0(𝑡) =
2𝛽1

3 − 6𝛽1
3𝑡 + 𝛽1

3𝑡2 − 2𝛽1
3𝑡3

𝛿
 

𝑄1(𝑡)

=
(4𝛽1

2 + 4𝛽1 + 𝛽2) + (6𝛽1
3 − 6𝛽1)𝑡 − 3(2𝛽1

3 + 2𝛽1
2 + 𝛽2)𝑡

2 + 2(𝛽1
3 + 𝛽1

2 + 𝛽1 + 𝛽2)𝑡
3

𝛿
 

𝑄2(𝑡) =
2 + 6𝛽1𝑡 +  3(2𝛽1

2 + 𝛽2)𝑡
2 − 2(𝛽1

2 + 𝛽1 + 𝛽2 + 1)𝑡
3

𝛿
 

𝑄3(𝑡) =
2𝑡3

𝛿
 

0 ≠ 𝛿 =  2𝛽1
3 + 4𝛽1

2 + 4𝛽1𝑡
2 + 𝛽2 + 2 

If 𝛽1 > 0  and 𝛽2 ≥ 0, then these functions have property partition of unity and non-negativity, 

thus whole curve lies inside convex hull of its defining control polygon.  
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Figure 1-7 Beta polynomials and Beta spline for 𝛽1 = 3 and 𝛽2 = 10 

End points of curve segment 𝑠𝑖 satisfy equations 

𝑠𝑖(𝛽1, 𝛽2, 0) =  
1

𝛿
[2𝛽1

3 𝑉𝑖 + (4𝛽1
2 + 4𝛽1 + 𝛽2)𝑉𝑖+1 + 2 𝑉𝑖+2] 

𝑠𝑖(𝛽1, 𝛽2, 1) =  
1

𝛿
[2𝛽1

3 𝑉𝑖+1 + (4𝛽1
2 + 4𝛽1 + 𝛽2)𝑉𝑖+2 + 2 𝑉𝑖+3] 

so for 𝛽1 > 0 and 𝛽2 ≥ 0 they are inside of triangles formed by 𝑉𝑖, 𝑉𝑖+1, 𝑉𝑖+2 and 𝑉𝑖+1, 𝑉𝑖+2, 𝑉𝑖+3, 

respectively. Spline’s starting and ending points are then inside of triangles formed by 𝑉0, 𝑉1, 𝑉2 

and 𝑉𝑘−2, 𝑉𝑘−1, 𝑉𝑘, respectivelly. 

Once again we can change spline’s end by multiple vertices method or by phantom 

vertices. Multiple vertices work by adding new control points 𝑉−1 = 𝑉0 and 𝑉𝑘+1 = 𝑉𝑘 creating 

new ending points 

𝑠−1(𝛽1, 𝛽2, 0) =  𝑉0 +
1

𝛿
[𝑉1 − 𝑉0] 

𝑠𝑘−2(𝛽1, 𝛽2, 1) =  𝑉𝑘 +
2𝛽1

3

𝛿
[𝑉𝑘−1 − 𝑉𝑘] 

or by adding new control points 𝑉−2 = 𝑉0, 𝑉−1 = 𝑉0, 𝑉𝑘+1 = 𝑉𝑘 and 𝑉𝑘+2 = 𝑉𝑘. The result is 

curve interpolating control points 𝑉0 and 𝑉𝑘.  

 Phantom vertices method adds new control points 𝑉−1 and 𝑉𝑘+1 in such way, that  

𝑠0´(𝛽1, 𝛽2, 0) =  𝑞0⃗⃗⃗⃗  

𝑠𝑘−3´(𝛽1, 𝛽2, 1) =  𝑞1⃗⃗⃗⃗  

or adds another points 𝑉−2 and 𝑉𝑘+2 to create relaxed spline - curve with zero curvature 

𝑠0´´(𝛽1, 𝛽2, 0) =  0⃗  

𝑠𝑘−3´´(𝛽1, 𝛽2, 1) =  0⃗  

 We can change shape of Beta-spline by modifying 𝛽1 and 𝛽2 parameters. Parameter 𝛽1 is 

called bias and we can express it as  

𝛽1 = 
|𝑠𝑖+1´(𝛽1, 𝛽2, 0)|

|𝑠𝑖´(𝛽1, 𝛽2, 1)|
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For parameter 𝛽1 > 1 is 𝑖 + 1-th segment more attracted to common tangent than 𝑖-th segment 

and for 0 < 𝛽1 < 1 vice versa. If 𝛽1 = 1 then deviation from said tangent is the same for both 

segments. Parameter 𝛽2 affects how much joining point 𝑆𝑖 of two following segments 𝑖 and 𝑖 + 1 

are attracted to corresponding control vertex 𝑉𝑖+2. 

𝑠𝑖(𝛽1, 𝛽2, 1) =  
1

𝛿
[2𝛽1

3 𝑉𝑖+1 + (4𝛽1
2 + 4𝛽1 + 𝛽2)𝑉𝑖+2 + 2 𝑉𝑖+3] =  𝑆𝑖 

Now if we define 𝑘 =  𝛿 − 𝛽2 and  

𝐾𝑖 =  2𝛽1
3 𝑉𝑖+1 + (4𝛽1

2 + 4𝛽1)𝑉𝑖+2 + 2 𝑉𝑖+3 

we obtain equation  

𝑆𝑖 − 𝑉𝑖+2 =
1

𝑘 + 𝛽2
[𝐾𝑖 + 𝑘𝑉𝑖+2] 

For parameter 𝛽2 > 0 point 𝑆𝑖 is approaching point 𝑉𝑖+2, for 𝛽2 < 0 we get same effect 

but some of blending functions can be negative and thus curve will not be in convex hull formed 

by control polygon. If 𝛽2 → −𝑘 then point 𝑆𝑖 is pushed away from point 𝑉𝑖+2. We can conclude 

that parameter 𝛽2 changes tension of spline so we call it tension parameter. 

1.2.6. B-spline 

 B-spline is approximation curve for given control polygon and important role  

in modelling of this type of curve is played by knot vector. We can define B-spline of degree 𝑘 

for given control vertices 𝑉0, … , 𝑉𝑛 and knot vector 𝑈 =  {𝑢𝑖}𝑖=0
𝑚  where 𝑚 = 𝑛 + 𝑘 + 1 as in [10] 

by equation 

𝑠(𝑢) =∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑉𝑖

𝑛

𝑖=0

 

where 𝑢 ∈ [𝑢𝑘 , 𝑢𝑚−𝑘) and 𝑁𝑗
𝑘(𝑈, 𝑢) are B-spline basis functions. (Figure 1-8) 

 

Figure 1-8 B-spline of degree 𝑛 = 3 with uniform knot vector 

 Knot vector 𝑈 is a non-decreasing sequence of numbers 𝑢𝑖 such that 𝑈 = {𝑢𝑖}𝑖=0
𝑚 . 

Elements 𝑢𝑖 are called knots. For each 𝑢𝑖 we define 𝑗 = arg𝑚𝑖𝑛𝑙≤𝑖 {𝑢𝑙 = 𝑢𝑖 } and  

𝑘 = arg𝑚𝑎𝑥𝑙≥𝑖 {𝑢𝑙 = 𝑢𝑖 }. We call number 𝜇(𝑢𝑖) = 𝑘 − 𝑗 + 1  multiplicity of a knot 𝑢𝑖. Knots 

𝑢0, … , 𝑢𝜇(𝑢0) and 𝑢𝑚−𝜇(𝑢𝑚), … , 𝑢𝑚 are called external knots and all knots between them are called 

internal knots. Most used types of knot vector are open, uniform or non-uniform. 

 Uniform knot vector, sometimes also called periodic, has all or only internal knots equally 

spaced and usually begins at zero. It also can be normalized, so each 𝑢𝑖 ∈ [0, 1]. Non-uniform 
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knot vector is unevenly spaced or has multiple knots. Open knot vector has external knots  

of multiplicity 𝑘 + 1. 

 Assume 𝑘 is a given degree of B-spline basis function 𝑁𝑖
𝑘(𝑈, 𝑢) and 𝑈 = {𝑢𝑖}𝑖=0

𝑚 , 

𝑚 = 𝑛 + 𝑘 + 1, is knot vector in which every knot has maximum knot multiplicity of 𝑘 + 1. We 

define functions 𝑁𝑖
𝑘(𝑈, 𝑢) recursively as in [10] by equations  

𝑁𝑖
0(𝑈, 𝑢) =  {

1  𝑖𝑓 𝑢 ∈  [𝑢𝑖, 𝑢𝑖+1)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑖 = 0,… ,𝑚 − 1 

𝑁𝑖
𝑙(𝑈, 𝑢) =  {

𝑢 – 𝑢𝑖
𝑢𝑖+𝑙 − 𝑢𝑖

𝑁𝑖
𝑙−1(𝑈, 𝑢) + 

𝑢𝑖+𝑙+1 –  𝑢

𝑢𝑖+𝑙+1 − 𝑢𝑖+1
𝑁𝑖+1
𝑙−1(𝑈, 𝑢)  𝑢 ∈  [𝑢𝑖 , 𝑢𝑖+𝑙+1)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 for 𝑖 = 0,… ,𝑚 − 𝑙 − 1 and 𝑙 = 1,… , 𝑘. To avoid zero denominator and thus zero division 

problem we consider this summand equal to zero. In case of 𝑢𝑖 = 𝑢𝑖+1 we define 𝑁𝑖
0(𝑈, 𝑢) = 0. 

(Figure 1-9 and Figure 1-10) 

 

Figure 1-9 B-spline polynomials of degree 𝑛 = 3 for uniform knot vector 𝑈 =  {0, 1, 2, 3, 4, 5, 6, 7}  
and for open knot vector 𝑈 = {0, 0, 0, 0, 1, 1, 1, 1}, respectively 

  

Figure 1-10 B-spline polynomials of degree 𝑛 = 3 for knot vector 𝑈 =  {0, 1, 2, 3, 4, 5.5, 5.5, 6}  
and for knot vector 𝑈 = {0, 1, 1.5, 1.75, 2, 2, 5.25, 5.5}, respectively 

 B-spline basis functions have these properties: 

 Non-negativity:  

𝑁𝑖
𝑘(𝑈, 𝑢)  ≥ 0, 𝑢 ∈ 𝑅, 𝑖 = 0,… ,𝑚 − 𝑘 − 1 

 Local support:  

𝑁𝑖
𝑘(𝑈, 𝑢) =  0, 𝑢 ∉  [𝑢𝑖, 𝑢𝑖+𝑘+1) 

𝑁𝑖
𝑘(𝑈, 𝑢) ≥ 0, 𝑢 ∈ [𝑢𝑖, 𝑢𝑖+𝑘+1) 

for 𝑖 = 0,… ,𝑚 − 𝑘 − 1. 

 Partition of unity:  
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∑ 𝑁𝑖
𝑘(𝑈, 𝑢)

𝑚−𝑘

𝑖=0

= 1, 𝑢 ∈ [𝑢𝑛, 𝑢𝑚−𝑘) 

 Derivative: 

𝑑

𝑑𝑢
𝑁𝑖
𝑘(𝑈, 𝑢) = 𝑘 (

1

𝑢𝑖+𝑘 − 𝑢𝑖
𝑁𝑖
𝑘−1(𝑈, 𝑢) −

1

𝑢𝑖+𝑘+1 − 𝑢𝑖+1
𝑁𝑖+1
𝑘−1(𝑈, 𝑢)) 

for 𝑖 = 0,… ,𝑚 − 𝑘 − 1 if derivative at 𝑢 exists. 

 Linear independence: Functions 𝑁𝑖
𝑘(𝑈, 𝑢) are linear independent for  

𝑖 = 0,… ,𝑚 − 𝑘 − 1. 

 Uni-modality: Function 𝑁𝑖
𝑘(𝑈, 𝑢) has exactly one maximum for 𝑖 = 0,… ,𝑚 − 𝑘 − 1 

and 𝑘 ≥ 1 

 Periodicity: This property is valid only for uniform knot vector.  

𝑁𝑖
𝑘(𝑈, 𝑢) =  𝑁𝑖−1

𝑘 (𝑈, 𝑢 − 𝑑) = 𝑁𝑖+1
𝑘 (𝑈, 𝑢 + 𝑑) , 𝑑 = 𝑢𝑖 − 𝑢𝑖−1 

 Recursive property:  

𝑁𝑖
𝑘(𝑈, 𝑢) =  

𝑢 – 𝑢𝑖
𝑢𝑖+𝑘 − 𝑢𝑖

𝑁𝑖
𝑘−1(𝑈, 𝑢) + 

𝑢𝑖+𝑘+1 –  𝑢

𝑢𝑖+𝑘+1 − 𝑢𝑖+1
𝑁𝑖+1
𝑘−1(𝑈, 𝑢) 

for 𝑖 = 0,… ,𝑚 − 𝑘 − 1 

Proofs of these properties can be found in [10]. 

B-spline curve has following properties [9]: 

 B-spline curve 𝑠(𝑢) generally follows shape of control polygon 𝑉𝑖, 𝑖 = 0,… , 𝑛. 

 Domain for curve is interval 𝑢 ∈ [𝑢𝑘, 𝑢𝑚−𝑘). 

 Local modelling: Curve segment corresponding to interval 𝑢 ∈ [𝑢𝑖 , 𝑢𝑖+1), 

𝑘 ≤  𝑖 ≤ 𝑚 − 𝑘 − 1 is designated by 𝑘 + 1 control vertices 𝑉𝑖−𝑘, … , 𝑉𝑖. 

 Convex hull property: For 𝑢 ∈ [𝑢𝑖, 𝑢𝑖+1), 𝑘 ≤  𝑖 ≤ 𝑚 − 𝑘 − 1 point on curve 𝑠(𝑢) lies 

in convex hull formed by vertices 𝑉𝑖−𝑘 , … , 𝑉𝑖. 

 Variation diminishing [10]: Intersection of control polygon and any hyperplane creates 

at least same number of points of intersection as number of intersections of said 

hyperplane and B-spline curve. 

 Continuity: B-spline is 𝐶𝑘−𝜇(𝑢𝑖) continuous at points 𝑠(𝑢𝑖) and 𝐶∞ continuous 

everywhere else. If internal knot 𝑢𝑖 has multiplicity of 𝑘 + 1, then curve can be 𝐶0 

uncontinuous. 

 Derivatives [9]:  

𝑑𝑙𝑠(𝑢)

𝑑𝑢𝑙
=  𝑘 … (𝑘 − 𝑙 + 1)∑𝑁𝑖

𝑛−𝑙(𝑈, 𝑢)∆𝑙  𝑉𝑖

𝑛−𝑙

𝑖=0

 

where ∆𝑙  𝑉𝑖 is a vector defined recursively as 

 ∆0𝑉𝑖 = 𝑉𝑖 

∆1 𝑉𝑖 = 
𝑉𝑖+1 − 𝑉𝑖

𝑢𝑖+𝑘+1 − 𝑢𝑖+1
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∆𝑙  𝑉𝑖 = ∆
1(∆𝑙−1 𝑉𝑖) =

∆𝑙−1 𝑉𝑖+1 − ∆
𝑙−1 𝑉𝑖

𝑢𝑖+𝑘+1 − 𝑢𝑖+𝑙
 

 Invariance under affine transformation:  

𝑇(𝑠(𝑢)) = 𝑇 (∑𝑁𝑖
𝑛(𝑈, 𝑢)𝑉𝑖

𝑛

𝑖=0

) =∑𝑁𝑖
𝑛(𝑈, 𝑢)𝑇(𝑉𝑖)

𝑛

𝑖=0

 

where 𝑇 is an affine transformation. 

Cubic B-spline curve segment with periodic knot vector has end points defined by these 

equations [1] 

𝑠(𝑢3+𝑖) =
1

6
(𝑉𝑖 + 4𝑉𝑖+1 + 𝑉𝑖+2) = 𝑉𝑖+1 +

1

3
(
𝑉𝑖 + 𝑉𝑖+2

2
− 𝑉𝑖+1) 

𝑠(𝑢3+𝑖+1) =
1

6
(𝑉𝑖+1 + 4𝑉𝑖+2 + 𝑉𝑖+3) = 𝑉𝑖+2 +

1

3
(
𝑉𝑖+1 + 𝑉𝑖+3

2
− 𝑉𝑖+2) 

for 𝑖 = 0,… , 𝑛 − 3. Both points are anti-centroid of triangle formed by 𝑉𝑖𝑉𝑖+1𝑉𝑖+2 and 

𝑉𝑖+1𝑉𝑖+2𝑉𝑖+3, respectively. First and second derivatives at end points of segment are defined by 

following equations 

𝑠´(𝑢3+𝑖) =
1

2
(𝑉𝑖+2−𝑉𝑖) 

𝑠´(𝑢3+𝑖+1) =
1

2
(𝑉𝑖+3−𝑉𝑖+1) 

𝑠´´(𝑢3+𝑖) = (𝑉𝑖 − 2𝑉𝑖+1 + 𝑉𝑖+2) = (𝑉𝑖 − 𝑉𝑖+1) + (𝑉𝑖+2 − 𝑉𝑖+1) 

𝑠´´(𝑢3+𝑖+1) = (𝑉𝑖+1 − 2𝑉𝑖+2 + 𝑉𝑖+3) = (𝑉𝑖+1 − 𝑉𝑖+2) + (𝑉𝑖+3 − 𝑉𝑖+2) 

We can control end points by applying multiple coincident vertices [2]. By defining 

multiple coincident vertices at endpoint of the B-spline curve resulting curve is pulled toward  

to vertex with modified multiplicity. If multiplicity of this vertex is 𝑘 (for B-spline of degree 𝑘), 

then B-spline interpolates this vertex and tangent vector at this point is parallel to first or last 

adjacent control polygon span with non-zero length. If we set multiplicity of an end point to  

𝑘 + 1, first or last segment of curve will be a line segment parallel to first or last control polygon 

span. This can be unpleasant for modelling and use of open knot vector is better for purpose  

of interpolating starting and ending points. 

Process of knot insertion is usually performed to gain better control of curve or  

to enumerate curve at given parametric value. After knot insertion curve’s shape remains the same 

but control polygon will change and also number of curve segments will be increased by one. 

If we insert just one knot, then we are talking about knot insertion but if we insert multiple knots 

then we call it knot refinement.  

Let 𝑠(𝑢) be a B-spline curve of degree 𝑘 with control vertices 𝑉0, … , 𝑉𝑛 and 𝑈 =

 {𝑢𝑖}𝑖=0
𝑚 ,𝑚 = 𝑛 + 𝑘 + 1, is its knot vector. We insert new knot 𝑢∗ ∈ [𝑢𝑗, 𝑢𝑗+1)  to create new 

knot vector 𝑈∗ = {𝑢𝑖
∗}𝑖=0
𝑚+1, such that  
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𝑢𝑖
∗ = {

𝑢𝑖 𝑖 = 0,… , 𝑗
𝑢∗ 𝑖 = 𝑗 + 1

𝑢𝑖 − 1 𝑖 = 𝑗 + 2,… ,𝑚 + 1
 

Determining new control vertices for curve of identical shape  

𝑠(𝑢) =  ∑𝑁𝑖
𝑘(𝑈∗, 𝑢)𝑉𝑖

∗

𝑛+1

𝑖=0

 

yields [9] 

𝑉𝑖
∗ = {

𝑉𝑖 0 ≤ 𝑖 ≤ 𝑗 − 𝑘
(1 − 𝛼𝑖)𝑉𝑖−1 + 𝛼𝑖𝑉𝑖 𝑗 − 𝑘 + 1 ≤ 𝑖 ≤ 𝑗

𝑉𝑖−1 𝑗 + 1 ≤ 𝑖 ≤ 𝑛 + 1
, 𝛼𝑖 =

𝑢𝑗 − 𝑢𝑖

𝑢𝑖+𝑘 − 𝑢𝑖
 

Shown procedure is known as Boehm’s algorithm. 

“Unfortunately, this so called knot removal procedure cannot be carried out in general without 

changing the shape of the spline curve. Obviously, the only exception occurs if a knot has been 

inserted artificially before or, in other words, if the continuity order at the respective knot is higher 

than it should be according to its multiplicity. Thus, the necessity to interpret the knot removal 

process as an approximation process is manifest.” [8] 

 For given B-spline curve with degree 𝑘, we remove knot 𝑢𝑠, such that 𝑢𝑠 ≠ 𝑢𝑠+1, which 

has multiplicity 𝑚, then new control points are defined as in [2] by equation 

𝑉𝑖
∗ = {

𝑉𝑖
(𝑉𝑖 − (1 − 𝛼𝑖)𝑉𝑖−1

∗ )/𝛼𝑖
(𝛽𝑖𝑉𝑖 − 𝛽𝑖𝑉𝑖

∗)/(1 − 𝛽𝑖)
𝑉𝑖+1

0 ≤ 𝑖 ≤ 𝑠 − 𝑘 − 1
𝑠 − 𝑘 ≤ 𝑖 ≤ 𝑐
𝑐 < 𝑖 ≤ 𝑠 −𝑚

𝑠 −𝑚 + 1 ≤ 𝑖 ≤ 𝑛 − 1

𝑐 =
𝑘 −𝑚 + 1

𝑠 −𝑚
 

𝛼𝑖 =
𝑢𝑗 − 𝑢𝑖

𝑢𝑖+𝑘 − 𝑢𝑖
, 𝛽𝑖 =

𝑢𝑗+1 − 𝑢𝑖+1

𝑢𝑖+𝑘+1 − 𝑢𝑖+1
 

 We use de Boor algorithm for evaluating B-spline curve of degree 𝑘. Similarly  

to de Casteljau algorithm this algorithm makes use of recursive property of B-spline basis function 

𝑁𝑖
𝑘(𝑈, 𝑢) =  

𝑢 – 𝑢𝑖
𝑢𝑖+𝑘 − 𝑢𝑖

𝑁𝑖
𝑘−1(𝑈, 𝑢) + 

𝑢𝑖+𝑘+1 –  𝑢

𝑢𝑖+𝑘+1 − 𝑢𝑖+1
𝑁𝑖+1
𝑘−1(𝑈, 𝑢) 

for 𝑖 = 0,… ,𝑚 − 𝑘 − 1. Given parameter 𝑢 ∈ [𝑢𝑘 , 𝑢𝑚−𝑘) we start by finding knot interval 

[𝑢𝑟, 𝑢𝑟+1) such that 𝑢 ∈ [𝑢𝑟, 𝑢𝑟+1). Then we define  

𝑟𝑖
0(𝑢) =  𝑉𝑖, 𝑖 = 𝑟 − 𝑘,… , 𝑟 

and then compute  

𝑟𝑖
𝑗(𝑢) = (1 − 𝛼𝑖

𝑗
) 𝑟𝑖−1

𝑗−1(𝑢) + 𝛼𝑖
𝑗
 𝑟𝑖
𝑗−1(𝑢), 𝑖 = 𝑟 − 𝑘 + 𝑗,… , 𝑟, 𝑗 = 1,… , 𝑘 

 where 𝛼𝑖
𝑗
(𝑢) =

𝑢−𝑢𝑖

𝑢𝑖+𝑘+1−𝑗−𝑢𝑖
. In the last step we obtain point 

𝑟𝑟
𝑘(𝑢) = 𝑠(𝑢) 



22 

 

and it is a point on curve corresponding to parametric value of 𝑢. 

 We can modify shape of B-spline by various ways, most obvious is changing knot vector. 

We can also change positions and multiplicity of control points or use multiple knot values. 

1.3. Rational curves 

 All curve described so far were subsets of points from 𝐸2 or 𝐸3 and we call them integral 

curves. Rational curves were introduced to further augment control over shape of curve. Point 

(𝑥, 𝑦, 𝑧) is now represented by homogenous coordinates (𝑋, 𝑌, 𝑍,𝑊), where  

𝑥 =  
𝑋

𝑊
, 𝑦 =  

𝑌

𝑊
, 𝑧 =  

𝑍

𝑊
,𝑊 ≠ 0 

This construction is usually visualized as central projection with centre of projection being point 

with coordinates (0,0,0,1) to hyperplane given by equation 𝑊 = 1. We add weight 𝑤𝑖 to each 

control point 𝑉𝑖 such that  𝑉𝑖
𝑤 = (𝑤𝑖𝑉𝑖, 𝑤𝑖) = (𝑤𝑖𝑋𝑖 , 𝑤𝑖𝑌𝑖 , 𝑤𝑖𝑍𝑖 , 𝑤𝑖). 

 Now any integral curve of degree 𝑛 can be defined by equation as in [1] 

𝑟𝑤(𝑢) = 𝑅(𝑢) =  ∑𝑇𝑖(𝑢)𝑉𝑖
𝑤

𝑛

𝑖=0

 

where 𝑇𝑖(𝑢) are blending functions. We project this curve integral 𝑅(𝑢) to the hyperplane 

𝑊 = 1 and there we can express curve 𝑟(𝑢) as 

𝑟(𝑢) =  
𝑅(𝑢)

𝑊(𝑢)
=
∑ 𝑇𝑖(𝑢)𝑤𝑖𝑉𝑖
𝑛
𝑖=0

∑ 𝑇𝑖(𝑢)
𝑛
𝑖=0 𝑤𝑖

=∑𝑅𝑖(𝑢)𝑉𝑖

𝑛

𝑖=0

 

where blending functions 𝑅𝑖(𝑢) defined as 

𝑅𝑖(𝑢) =
𝑇𝑖(𝑢)𝑤𝑖

∑ 𝑇𝑗(𝑢)𝑤𝑗
𝑛
𝑗=0

 

are now rational polynomials and hence we call curve 𝑟(𝑢) rational curve. 

1.3.1. Rational Bézier curve 

 Rational Bézier curve is expansion of Bézier curve. For given control points 𝑉0, … , 𝑉𝑛 and 

their weights 𝑤𝑖 ≥ 0, 𝑖 = 0,… , 𝑛, we define rational Bézier curve of degree 𝑛 as 

𝑐(𝑡) =
𝐶(𝑡)

𝑊(𝑡)
=
∑ 𝐵𝑖

𝑛(𝑡)𝑤𝑖𝑉𝑖
𝑛
𝑖=0

∑ 𝐵𝑖
𝑛(𝑡)𝑛

𝑖=0 𝑤𝑖
=∑𝑅𝑖

𝑛(𝑡)𝑉𝑖

𝑛

𝑖=0

 

𝑅𝑖
𝑛(𝑡) =

𝐵𝑖
𝑛(𝑡)𝑤𝑖

∑ 𝐵𝑗
𝑛(𝑡)𝑤𝑗

𝑛
𝑗=0

 

where 𝑡 ∈ [0, 1] and 𝐵𝑖
𝑛(𝑡) are Bernstein polynomials of degree 𝑛. Rational blending functions 

𝑅𝑖
𝑛(𝑡) are generalisation of Bernstein polynomials so they have same properties and if all 𝑤𝑖 are 

equal, we obtain Bernstein polynomials. (Figure 1-11) 
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Figure 1-11 Rational Bernstein polynomials and Bézier arc of degree 𝑛 = 3 with weights 𝑤0 = 𝑤2 = 𝑤3 = 1,𝑤1 =
4 

Rational Bézier curve has properties as integral Bézier curve apart from these [9]: 

 Convex hull property: If 𝑤𝑖 ≥ 0, 𝑖 = 0,… , 𝑛 then every point of a rational Bézier curve 

lies inside the convex hull of its control polygon. If even a single weights is negative, this 

property does not hold. 

 Invariance under projective transformation:   

𝑃(𝑐(𝑡)) = 𝑃 (∑𝑅𝑖
𝑛(𝑡)𝑉𝑖

𝑛

𝑖=0

) = ∑𝑅𝑖
𝑛(𝑡)𝑃(𝑉𝑖)

𝑛

𝑖=0

 

where 𝑃 is an projective transformation. This is stronger condition than invariance under 

affine transformation [3]. 

 Derivative:  

𝑑

𝑑𝑡
𝑐(𝑡) =

𝐶´(𝑡)

𝑊(𝑡)
− 𝑐(𝑡)

𝑊´(𝑡)

𝑊(𝑡)
 

Tangents at end points are 

𝑑

𝑑𝑡
𝑐(0) = 𝑛

𝑤1
𝑤0
(𝑉1 − 𝑉0) 

𝑑

𝑑𝑡
𝑐(1) = 𝑛

𝑤𝑛−1
𝑤𝑛

(𝑉𝑛 − 𝑉𝑛−1) 

 Degree elevation and reduction: Same as for Bézier arc, we can represent curve of degree 

𝑛 as curve of degree 𝑛 + 1 or approximate said curve with curve of degree 𝑛 − 1. 

Algorithms for obtaining new control points ate the same, but they work  

with homogenous coordinates. 

Slight modification of de Casteljau algorithm is used for enumerating rational Bézier 

curve. We can use standard algorithm but now each point considered in algorithm have expanded 

affine coordinates. Final point on curve is then obtained by projecting calculated point  

to hyperplane 𝑊 = 1 

𝑣0
𝑛(𝑡) = (𝑋, 𝑌, 𝑍,𝑊) ⟶ (

𝑋

𝑊
,
𝑌

𝑊
,
𝑍

𝑊
) = 𝑐(𝑡) 

Another approach is to project each point obtained in algorithm right after its enumeration 

to hyperplane 𝑊 = 1. 
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By modifying weights we can control how much the curve is pulled toward to control 

points. Now assume rational Bézier curve with all weights 𝑤𝑖 having same non-zero value. 

Resulting curve has same shape as integral curve regardless of weight value. Increasing ratio  

of one weight 𝑤𝑖 relative to others pulls the curve closer to control vertex 𝑉𝑖 and away from other 

control vertices. 

Important property of rational Bézier curve is ability to represent conic sections. Given 

control vertices 𝑉0, 𝑉1 and 𝑉2 with theirs non-negative weights 𝑤0, 𝑤1 and 𝑤2, quadratic rational 

Bézier curve is defined by 

𝑐(𝑡) =
∑ 𝐵𝑖

2(𝑡)𝑤𝑖𝑉𝑖
2
𝑖=0

∑ 𝐵𝑗
2(𝑡)𝑤𝑗

2
𝑗=0

=
(1 − 𝑡)2𝑤0𝑉0 + 2𝑡(1 − 𝑡)𝑤1𝑉1 + 𝑡

2𝑤2𝑉2
(1 − 𝑡)2𝑤0 + 2𝑡(1 − 𝑡)𝑤1 + 𝑡

2𝑤2
 

Type of conic section is defined by denominator  

𝑊(𝑡) = (𝑤0 − 2𝑤1 +𝑤2)𝑢
2 + 2(𝑤1 −𝑤0)𝑡 + 𝑤0 

Discriminant for this quadratic equation is 𝑤1
2 −𝑤2𝑤0 so if  

 𝑤1
2 −𝑤2𝑤0  < 0 then type of conic section is ellipse 

 𝑤1
2 −𝑤2𝑤0 = 0  then type of conic section is parabola 

 𝑤1
2 −𝑤2𝑤0 > 0  then type of conic section is hyperbola 

If we choose weights 𝑤0 = 𝑤2 = 1 then previous conditions are simplified to: 

 𝑤1
2 < 1 ⟹ 𝑤1 ∈ (−1,1) ⟹ 𝑤1 ∈ (0,1)  conic section is ellipse 

 𝑤1
2 = 1⟹ 𝑤1 = ±1⟹ 𝑤1 = 1   conic section is parabola 

 𝑤1
2 > 1 ⟹ 𝑤1 ∈ (−∞, 1) ∪ (1,∞) ⟹ 𝑤1 > 1 conic section is hyperbola 

 It is more convenient for designers to choose position of point on curve for some 

parametric value, for example 𝑡 = 1 2⁄ , rather than weight 𝑤1. This point 𝑆 is called shoulder 

point.  

𝑆 = 𝑐 (
1

2
) =

1
2
(𝑉0 + 𝑉2) + 𝑤1𝑉1

1 + 𝑤1
=

1

1 + 𝑤1
𝑀 +

𝑤1
1 + 𝑤1

𝑉1 = (1 − 𝑠)𝑀 + 𝑠𝑉1 

where 𝑀 is midpoint of control points 𝑉0 and 𝑉2 and parameter 𝑠 =
𝑤1

1+𝑤1
.  By moving point on 

curve  𝑆 along line segment 𝑀𝑉1 designer change value of 𝑠 and obtain line segment 𝑉0𝑉2  

for 𝑠 = 0, ellipse for 𝑠 ∈ (0, 1 2⁄ ), parabola for 𝑠 = 1 2⁄  and hyperbola for 𝑠 ∈ (1 2⁄ , 1).  

1.3.2. Rational Bézier spline 

 Rational Bézier spline for control points 𝑉0, … , 𝑉𝑘, 𝑘 ≥ 2 and their weights  

𝑤0, … , 𝑤𝑘 ≥ 0 is defined as 

𝑠𝑖(𝑢) =  
∑ 𝐵𝑗

𝑛(𝑡)𝑤𝑖,𝑗𝑉𝑖,𝑗
𝑛
𝑗=0

∑ 𝐵𝑗
𝑛(𝑡)𝑤𝑖,𝑗

𝑛
𝑗=0

, 𝑖 = 0,… , 𝑘 − 1 
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where 𝑢 ∈ [𝑎, 𝑏], 𝑡 =  
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
, 𝑉𝑖,𝑗 are control points, 𝑤𝑖,𝑗 are their weights and 𝐵𝑗

𝑛(𝑡) is 𝑗-th 

Bernstein polynomial of degree 𝑛. New control points 𝑉𝑖,𝑗 are again derived from control points 

𝑉𝑖, 𝑖 = 0,… , 𝑘 depending on type of spline, but using homogenous coordinates. 

We use de Casteljau algorithm for rational Bézier arc in order to evaluate point on spline. 

1.3.3. Rational B-splines curve - NURBS 

 “Rational B-splines provide a single precise mathematical form capable of representing 

the common analytical shapes – lines, planes, conic curves including circles, free form curves, 

quadric and sculptured surfaces – that are used in computer graphics and computer aided design.” 

[2] 

For given control points 𝑉0, … , 𝑉𝑛, their weights 𝑤𝑖 ≥ 0, 𝑖 = 0,… , 𝑛 and knot vector 𝑈 =

 {𝑢𝑖}𝑖=0
𝑚 ,𝑚 = 𝑛 + 𝑘 + 1, we define rational B-Spline curve of degree 𝑘  

𝑠(𝑢) =
𝑆(𝑢)

𝑊(𝑢)
=
∑ 𝑁𝑖

𝑘(𝑈, 𝑢)𝑤𝑖𝑉𝑖
𝑛
𝑖=0

∑ 𝑁𝑗
𝑘(𝑈, 𝑢)𝑛

𝑗=0 𝑤𝑗
=∑𝑅𝑖

𝑘(𝑢)𝑉𝑖

𝑛

𝑖=0

 

𝑅𝑖
𝑘(𝑢) =

𝑁𝑖
𝑘(𝑈, 𝑢)𝑤𝑖

∑ 𝑁𝑗
𝑘(𝑈, 𝑢)𝑤𝑗

𝑛
𝑗=0

 

where 𝑢 ∈ [𝑢𝑘 , 𝑢𝑚−𝑘) and 𝑅𝑖
𝑘(𝑈, 𝑢) is 𝑖-th rational B-spline basis function of degree 𝑘. Rational 

B-spline basis functions 𝑅𝑖
𝑘(𝑈, 𝑢) are generalisation of B-spline basis and thus inherit nearly all 

properties of non-rational functions. If all weights 𝑤𝑖 have same value then rational B-spline basis 

functions 𝑅𝑖
𝑘(𝑈. 𝑢) become B-spline basis functions 𝑁𝑖

𝑘(𝑈, 𝑢). Periodicity for uniform knot 

vector is preserved only if all weights have same value. (Figure 1-12) 

 

Figure 1-12 Rational B-spline polynomials and NURBS spline of degree 𝑛 = 3 for uniform knot vector 

and weights 𝑤𝑖 = {1, 4, 1, 1, 4} 

NURBS Spline has same properties as integral B-spline, apart from following [9]: 

 Convex hull property: If 𝑤𝑖 ≥ 0, 𝑖 = 0,… , 𝑛 then every point of NURBS curve lies inside 

convex hull defined by control polygon. 

 Invariance under projective transformation:  

𝑃(𝑠(𝑢)) = 𝑃(∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑉𝑖

𝑘

𝑖=0

) =∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑃(𝑉𝑖)

𝑘

𝑖=0
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where 𝑃 is an projective transformation. This is stronger condition than invariance under 

affine transformation [3]. 

 Derivative: 

𝑑

𝑑𝑡
𝑠(𝑢) =

𝑆´(𝑢)

𝑊(𝑢)
− 𝑠(𝑢)

𝑊´(𝑢)

𝑊(𝑢)
 

Derivatives at ending points are given by equations [2] 

𝑠´(𝑢𝑘) = (𝑘 − 1)
𝑤1
𝑤0
(𝑉1 − 𝑉0) 

𝑠´(𝑢𝑚−𝑘) = (𝑘 − 1)
𝑤𝑛−1
𝑤𝑛

(𝑉𝑛 − 𝑉𝑛−1) 

so once again tangent vectors at ending points are parallel to first and last control polygon span. 

Algorithms for knot insertion and knot removal are almost the same, but now they work 

with homogenous coordinates. We use rational de Boor algorithm for enumeration of rational  

B-spline curve. Similarly to modification of de Casteljau algorithm we choose one of two 

approaches. First one is to compute all intermediate results in homogenous coordinates and  

in second one we project these results into hyperplane 𝑊 = 1 after each step. 

 With rational B-spline curve we can also represent conic sections. We can represent all 

types of conic sections but with NURBS circle arc construction becomes simpler. We choose 

NURBS spline with degree 2, because conic sections are described by quadratic equations.  

With three vertices 𝑉0𝑉1𝑉2 forming isosceles triangle and weights 𝑤0 = 𝑤2 = 1 and 

𝑤1 = cos𝜃 where 𝜃 is angle between base and side of triangle 𝑉0𝑉1𝑉2. Obtained circular arc 

subtend angle 2𝜃 of a full circle. This arc represents one segment of NURBS spline with open 

knot vector 𝑈 = {0, 0, 0, 1, 1, 1}. Full circle is created by duplicating this procedure to obtain  

for example three 120° or four 90° segments. (Figure 1-13) 

  

Figure 1-13 Rational B-spline polynomials and NURBS spline of degree 𝑛 = 2 for knot vector 

 𝑈 = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4} and weights 𝑤0 = {1, √2 2⁄ , 1, √2 2⁄ , 1, √2 2⁄ , 1, √2 2⁄ , 1} 

1.4. Surfaces 

“Surfaces are used in almost all branches of modern technologies. Shapes of things we 

use every day like clothes, cell phones, cars and also buildings are usually designed using some 

form of computer aided design. We can find analytical form for many surfaces, but these forms 

often does not exist for more complex surfaces like airplane fuselage and car body.“ [2] Designers 

create these from simpler surfaces – patches composed of points and curves. The patches are 

joined together with different continuity conditions and called piecewise surfaces.   
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“A vector-valued parametric representation is used because it is axis independent, avoids 

infinite slope values with respect to some arbitrary axis system, allows the unambiguous 

representation of multivalued surfaces or space functions, facilitates the representation of surfaces 

in homogeneous coordinates and is compatible with the use of the three-dimensional 

homogeneous coordinate transformations.“ [2] 

If we want to represent surface by parametric representation, we have to use two 

parameters, 𝑢 and 𝑣. We call such surface bi-parametric and its equations are  

𝑥 = 𝑥(𝑢, 𝑣), 𝑦 = 𝑦(𝑢, 𝑣), 𝑧 = 𝑧(𝑢. 𝑣) 

where 𝑢, 𝑣 ∈ 𝑈 × 𝑉. If we fix value of 𝑢 or 𝑣, we obtain so-called 𝑣-isoparametric or  

𝑢-isoparametric curves on the surface. If isoparametric curve has fixed parameter of maximum 

(minimum) value, it forms edge of the surface. Fixing both parametric values results in a point  

on the surface. 

1.4.1. Swept surfaces 

 “A swept surface is generated when a curve is parametrically translated or rotated.  

In CAD, a surface is represented by series of curves, which are parametrically generated at various 

instances.” [11] 

While translating or rotating profile curve, we sample curve’s points position. Since both 

rotation and translation are affine transformations, surface of this type is called an affine surface. 

Here we will discuss surfaces of revolution and extruded surfaces. 

1.4.1.1. Surfaces of revolution 

 Assume a curve 𝑐(𝑢) = 𝐶0(𝑢) in space 𝐸3. If we rotate curve 𝐶0(𝑢) by angle 𝑣 ∈ 〈0,2𝜋〉 

around axis of rotation and sample position of 𝐶0(𝑢) while rotating we obtain surface  

of revolution. We add a condition for planar curve 𝐶0(𝑢) ⊂ 𝛼, plane 𝛼 cannot be perpendicular 

to axis of rotation. 𝑢-isocurve is original curve rotated by an fixed angle 𝑣 and 𝑣-isocurve is  

a parallel circle in plane 𝐶0(𝑢) ⊂ 𝛽 perpendicular to axis of rotation. We can use quaternions  

to simplify rotating around arbitrary axis. 

 “Quaternions are four vectors (this is why they were given this name), and inherit vector 

operations including addition, scalar multiplication, dot product and norm, but their multiplication 

is defined specially, in a way somehow similar to arithmetic of complex numbers, because 

quaternions can also be interpreted as a generalization of the complex numbers with 𝑠 as the real 

part and 𝑥, 𝑦, 𝑧 as the imaginary part. Denoting the imaginary axes by 𝑖, 𝑗 and 𝑘 yields:” [4] 

𝑞 = 𝑠 ∙ 1 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 = [𝑠, 𝑥, 𝑦, 𝑧] = [𝑠, �⃗⃗� ] 

where 𝑞 is quaternion, �⃗⃗�  is vector (𝑥, 𝑦, 𝑧) and basis elements 𝑖, 𝑗 and 𝑘 satisfy equations 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 

𝑖𝑗 = −𝑗𝑖 = 𝑘 

𝑗𝑘 = −𝑘𝑗 = 𝑖 

𝑘𝑖 = −𝑖𝑘 = 𝑗 
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Operation on quaternions are defined as in [4] 

𝑞1 + 𝑞2 = [𝑠1,𝑤1⃗⃗ ⃗⃗  ]+ [𝑠2,𝑤2⃗⃗⃗⃗  ⃗] = [𝑠1 + 𝑠2,𝑤1⃗⃗ ⃗⃗  +𝑤2⃗⃗⃗⃗  ⃗] 

𝜆𝑞 = 𝜆[𝑠, �⃗⃗� ] = [𝜆𝑠, 𝜆�⃗⃗� ] 

𝑞1 ∙ 𝑞2 = [𝑠1,𝑤1⃗⃗ ⃗⃗  ] ∙ [𝑠2,𝑤2⃗⃗⃗⃗  ⃗] = [𝑠1𝑠2 −𝑤1⃗⃗ ⃗⃗  ∙𝑤2⃗⃗⃗⃗  ⃗, 𝑠1𝑤2⃗⃗⃗⃗  ⃗ + 𝑠2𝑤1⃗⃗ ⃗⃗  −𝑤1⃗⃗ ⃗⃗  ×𝑤2⃗⃗⃗⃗  ⃗] 

〈𝑞1, 𝑞2〉 = 〈[𝑠1,𝑤1⃗⃗ ⃗⃗  ], [𝑠2,𝑤2⃗⃗⃗⃗  ⃗]〉 = 𝑠1𝑠2 +𝑤1⃗⃗ ⃗⃗  ∙𝑤2⃗⃗⃗⃗  ⃗ 

‖𝑞‖2 = √𝑠2 + 𝑥2 + 𝑦2 + 𝑧2 

Inverse quaternion to quaternion 𝑞−1 is defined as  

𝑞−1 =
[𝑠,−𝑤⃗⃗⃗⃗ ⃗⃗  ]

‖𝑞‖2
 

In order to rotate 3D vector 𝑎  around axis 𝑑   by an angle 𝛼 to new orientation �⃗� , we first 

extend this vector by an 𝑠 = 0 to create a quaternion [0, �⃗� ]. We use properties of quaternion 

multiplication to obtain [0, �⃗� ] by equation 

[0, 𝑎 ] = 𝑞 ∙ [0, �⃗� ] ∙ 𝑞−1, 𝑞 = [cos
𝛼

2
, sin

𝛼

2
∙ 𝑑  ] 

 “Our ultimate objective is to move an object from an orientation represented by 𝑞1 to new 

orientation of 𝑞2 by an even and uniform motion. If linear interpolation is used to generate  

the path of orientations between 𝑞1 and 𝑞2, then the angles of the subsequent quaternions will not 

be constant.” [4] 

“Instead of linear interpolation, a non-linear interpolation must be found that guarantees 

the constant angle between the subsequent interpolated quaternions. Spherical interpolation 

obviously meets this requirement, where the interpolated quaternions are selected uniformly from 

the arc between 𝑞1and 𝑞2. If 𝑞1and 𝑞2 are unit quaternions, then all the interpolated quaternions 

will also be of unit length. Unit size quaternions can be regarded as unit-size four-vectors which 

correspond to a 4D unit-radius sphere. An appropriate interpolation method must generate  

the great arc between 𝑞1and 𝑞2, and as can easily be shown, this great arc has the following form: 

𝑞(𝑡) =
sin(1 − 𝑡)𝜃

sin𝜃
∙ 𝑞1 +

sin 𝑡𝜃

sin𝜃
∙ 𝑞2 

Where angle cos𝜃 = 〈𝑞1, 𝑞2〉. “ [4]  

 Now we can express surface of revolution of 𝑐(𝑢) curve around axis 𝑑  by an angle 𝑣 as 

[0, 𝑆(𝑢, 𝑣)] = 𝑞(𝑣) ∙ [0, 𝑐(𝑢)] ∙ 𝑞(𝑣)−1 

where 𝑢, 𝑣 ∈ [𝑎, 𝑏]× [𝑟, 𝑠] ⊆ [𝑎, 𝑏]× [0, 2𝜋] and 𝑞(𝑣) is spherical interpolation between 

quaternions 𝑞1 and 𝑞2 given by equations 

𝑞1 = [cos
𝑟

2
, sin

𝑟

2
∙ �⃗�  ] , 𝑞2 = [cos

𝑠

2
, sin

𝑠

2
∙ �⃗�  ] 
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 Modelling of this kind of surface can be achieved by modifying shape of input curve, 

changing axis and angle of rotation. (Figure 1-14) 

 

Figure 1-14 Surface of revolution 

1.4.1.2. Extruded surfaces 

 Another type of affine surface is extruded surface. It is also called translational surface. 

This time we move curve point on curve 𝐶0(𝑢) along another curve 𝐷0(𝑣). Curves 𝐶0(𝑢) and 

𝐷0(𝑣) are defined on intervals [𝑎, 𝑏] and [𝑐, 𝑑] respectively.  

𝑆(𝑢, 𝑣) = 𝐶0(𝑢) + (𝐷0(𝑣) − 𝐷0(𝑐)) 

𝑢-isocurve is translated curve 𝐶0(𝑢) and 𝑣-isocurve is translated curve 𝐷0(𝑣). (Figure 1-15) 

 

Figure 1-15 Extruded surface 

1.4.2. Coons patches 

 This type of patch takes boundary curves and somehow interpolates them. We can divide 

Coons patches into categories by number of input curves and the way they are blended to form  

a patch. Changing shape of these surfaces is done by modifying boundary curves. 

1.4.2.1. Ruled Coons patches 

 We are given two curves in space, 𝐶0(𝑢) and 𝐶1(𝑢), defined on same interval 𝑢 ∈ [0, 1]. 

In order to create patch 𝑆(𝑢, 𝑣) we simply join corresponding points on curve with a line segment. 

Thus each 𝑣-isocurve is a line segment and that is why it is called ruled or linear Coons patch. 

We can write it down as in [1] 

𝑆(𝑢, 𝑣) = 𝐶0(𝑢)  + 𝑣(𝐶1(𝑢) − 𝐶0(𝑢)) 



30 

 

for 𝑢, 𝑣 ∈ [0, 1] × [0, 1]. (Figure 1-16)  

 

Figure 1-16 Linear Coons patch 

1.4.2.2. Bilinear Coons patches 

 Now we are given four curves in space, 𝐶0(𝑢), 𝐶1(𝑢) 𝐷0(𝑣) and 𝐷1(𝑣) defined on the 

same interval 𝑢, 𝑣 ∈ [0, 1]. These curves must have common points in corners of patch (they must 

“meet” in corners): 

𝐶𝑖(𝑗) =  𝐷𝑗(𝑖)       𝑖, 𝑗 = 0,1 

We call this 𝐶0 compatibility. Then we can define bilinear Coons patch as in [1] 

𝑆(𝑢, 𝑣) =  𝑆𝑐(𝑢, 𝑣) + 𝑆𝐷(𝑢, 𝑣) − 𝑆𝐶𝐷(𝑢, 𝑣) 

where 

𝑆𝑐(𝑢, 𝑣) = (1 − 𝑣) 𝐶0(𝑢)  + 𝑣𝐶1(𝑢) 

𝑆𝐷(𝑢, 𝑣) = (1 − 𝑢) 𝐷0(𝑣)  + 𝑢𝐷1(𝑣) 

𝑆𝐶𝐷(𝑢, 𝑣) = (1 − 𝑢 𝑢) (
𝐶0(0) 𝐶0(1)

𝐶1(0) 𝐶1(1)
) (
1 − 𝑣
𝑣

) 

for 𝑢, 𝑣 ∈ [0, 1] × [0, 1]. Sumand 𝑆𝐶𝐷(𝑢, 𝑣) is called bilinear interpolant of corner vertices. 

(Figure 1-17) 

 

Figure 1-17 Bilinear Coons patch 

1.4.2.3. Partially bicubic Coons patches 

 Blending functions used so far were linear, what can cause problems when joining two 

linear Coons patches along edges. Therefore we can choose another blending functions, which 
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fulfil these conditions [1]: 𝑓1(𝑢) + 𝑓2(𝑢) = 1, 𝑔1(𝑣) + 𝑔2(𝑣) = 1, 𝑓1(0) = 𝑔1(0) = 1 and 

𝑓2(1) = 𝑔2(1) = 0. In this work, we have chosen Hermite polynomials 𝐻0
3(𝑡) on the position  

of 𝑓1(𝑢) and 𝑔1(𝑣) and 𝐻3
3(𝑡) on the position of 𝑓2(𝑢) and 𝑔2(𝑣). Now patch can be described 

as  

𝑆(𝑢, 𝑣) =  𝑆𝑐(𝑢, 𝑣) + 𝑆𝐷(𝑢, 𝑣) − 𝑆𝐶𝐷(𝑢, 𝑣) 

where 

𝑆𝑐(𝑢, 𝑣) = 𝐻0
3(𝑣) 𝐶0(𝑢)  + 𝐻3

3(𝑣)𝐶1(𝑢) 

𝑆𝐷(𝑢, 𝑣) = 𝐻0
3(𝑢)𝐷0(𝑣)  + 𝐻3

3(𝑢)𝐷1(𝑣) 

𝑆𝐶𝐷(𝑢, 𝑣) = (𝐻0
3(𝑢) 𝐻3

3(𝑢)) (
𝐶0(0) 𝐶0(1)

𝐶1(0) 𝐶1(1)
) (
𝐻0
3(𝑣)

𝐻3
3(𝑣)

) 

for 𝑢, 𝑣 ∈ [0, 1] × [0, 1]. (Figure 1-18) 

 

Figure 1-18 Partialy bicubic Coons patch 

1.4.2.4. Bicubic Coons patch 

 In this case each boundary curve is Hermite cubic curve and we use all four Hermite cubic 

polynomials as blending functions. Curves have to be 𝐶0 compatible. Now we express patch 

𝑆(𝑢, 𝑣) as in [10] 

𝑆(𝑢, 𝑣) = [𝐻0
3(𝑢) 𝐻1

3(𝑢) 𝐻2
3(𝑢) 𝐻3

3(𝑢)]

[
 
 
 
 𝐶0(0) 𝐷0⃗⃗ ⃗⃗  (0)

𝐶0⃗⃗⃗⃗ (0) 𝑡00⃗⃗ ⃗⃗  ⃗

𝐷0⃗⃗ ⃗⃗  (1) 𝐶1(0)

𝑡10⃗⃗ ⃗⃗  ⃗ 𝐶1⃗⃗⃗⃗ (0)

𝐶0⃗⃗⃗⃗ (1) 𝑡01⃗⃗ ⃗⃗  ⃗

𝐶0(1) 𝐷1⃗⃗ ⃗⃗ (0)

𝑡11⃗⃗ ⃗⃗  ⃗ 𝐶1⃗⃗⃗⃗ (1)

𝐷1⃗⃗ ⃗⃗ (1) 𝐶1(1)]
 
 
 
 

[
 
 
 
 
𝐻0
3(𝑣)

𝐻1
3(𝑣)

𝐻2
3(𝑣)

𝐻3
3(𝑣)]

 
 
 
 

 

for 𝑢, 𝑣 ∈ [0, 1] × [0, 1]. (Figure 1-19) 
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Figure 1-19 Bicubic Coons patch 

Isocurves for both parametric directions are cubic Hermite arcs. There are three types  

of data in 4x4 matrix. First of them are corner vertices, next are tangent vectors in patch’s corner 

points in 𝑢 and 𝑣 parametric direction, respectively and last one is composed of mixed derivatives 

called twist vectors. They are zero vectors for Ferguson patch and non-zero for general bicubic 

Coons patch. If they are not given, then there are many ways to derive them from boundary curves 

in order to join patches to form a surface with 𝐶2 continuity. 

 The simplest of them is to create bilinear patch, where corners are 𝐶0(0), 𝐶0(1), 𝐶1(0) 

and 𝐶1(1) and boundary curves are line segments. Then twist vector are then defined as 

𝑡𝑖𝑗⃗⃗⃗⃗ = (𝐶0(0) − 𝐶0(1)) + (𝐶1(1) − 𝐶1(0)), 𝑖, 𝑗 = 0,1 

We can obtain twist vectors from Adini method [5]. In case of single patch, we create 

bilinear Coons patch with boundary curves same as for bicubic. Now equation for twist vector is 

𝑡𝑖𝑗⃗⃗⃗⃗ = (𝐷1⃗⃗ ⃗⃗ (𝑗) − 𝐷0⃗⃗ ⃗⃗  (𝑗)) + (𝐶1⃗⃗⃗⃗ (𝑖) − 𝐶0⃗⃗⃗⃗ (𝑖)) − (𝐶0(0) − 𝐶0(1)) + (𝐶1(1) − 𝐶1(0)), 𝑖, 𝑗 = 0,1 

Another methods can be found in [3] and [5]. 

1.4.3. Tensor product surfaces 

 “The product of a column vector and a row vector is an example of the mathematical 

operation of tensor-product: 

[

𝑎0
𝑎1
𝑎2
]⨂[𝑏0 𝑏1 𝑏2 𝑏3] =  [

𝑎0𝑏0 𝑎0𝑏1
𝑎1𝑏0 𝑎1𝑏1
𝑎2𝑏0 𝑎2𝑏1

𝑎0𝑏2 𝑎0𝑏3
𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏2 𝑎2𝑏3

] 

 A tensor-product surface 𝑆(𝑢, 𝑣) is one whose blending functions are products of pairs of 

univariate blending functions:” [7] 

𝑆(𝑢, 𝑣) =∑∑𝑃𝑖
𝑚(𝑢)𝑃𝑗

𝑛(𝑣)𝑉𝑖𝑗

𝑙

𝑗=0

𝑘

𝑖=0

=∑∑𝑆𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑙

𝑗=0

𝑘

𝑖=0
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𝑆𝑖𝑗(𝑢, 𝑣) = 𝑃𝑖
𝑚(𝑢)𝑃𝑗

𝑛(𝑣) 

where 𝑉𝑖𝑗, 𝑖 = 0,… , 𝑘, 𝑗 = 0,… , 𝑙 are control points, 𝑃𝑖
𝑚(𝑢), 𝑃𝑗

𝑛(𝑣) are univariate blending 

functions of degree 𝑚 and 𝑛, respectively, and 𝑆𝑖𝑗(𝑢, 𝑣) is bivariate blending function  

with degree 𝑚 and 𝑛 in respective parametric directions. Control points are organized 

topologically into a rectangular array consisting of 𝑘 rows and 𝑙 columns. Two control points 𝑉𝑎𝑏 

and 𝑉𝑐𝑑 are considered to be neighbours if |𝑎 − 𝑐| ≤ 1 and 𝑏 = 𝑑 or  |𝑏 − 𝑑| ≤ 1 and 𝑎 = 𝑐. 

Object formed by control vertices and all line segments, which are joining two neighbour points, 

is called control net.  

1.4.3.1. Tensor product Bézier surface 

 For given control points 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 we define tensor product Bézier 

surface 𝑆(𝑢, 𝑣) as in [9] 

𝑆(𝑢, 𝑣) =∑∑𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

 

where 𝑢, 𝑣 ∈ [0, 1] × [0, 1], 𝑚 and 𝑛 are degrees of said patch in 𝑢 and 𝑣 respective parametric 

directions and 𝐵𝑖
𝑚(𝑢) and 𝐵𝑖

𝑛(𝑣) are Bernstein polynomials of degree 𝑚 and 𝑛, respectively. 

(Figure 1-20) 

 

Figure 1-20 Tensor product Bézier patch 

Properties of tensor product Bézier surface are similar to those of Bézier curve [9]: 

 Bézier surface follows the shape of the control net 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛. 

 Convex hull property: Due to  

𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣) ≥ 0 

∑∑𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)

𝑛

𝑗=0

𝑚

𝑖=0

= 1 

for 𝑢, 𝑣 ∈ [0, 1] × [0, 1], surface points are located in the convex hull formed by control 

net. 

 Isocurves [10]: Isocurves for both parameters are Bézier arcs of degree 𝑚 and 𝑛, 

respectively. 𝑢-isocurves and 𝑣-isocurves are obtained by equations 

𝑆(𝑢, 𝑣∗) =∑𝐵𝑖
𝑛(𝑢)

𝑚

𝑖=0

∑𝐵𝑗
𝑛(𝑣∗)𝑉𝑖𝑗

𝑛

𝑗=0
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𝑆(𝑢∗, 𝑣) =∑𝐵𝑗
𝑛(𝑣)

𝑛

𝑗=0

∑𝐵𝑖
𝑚(𝑢∗)𝑉𝑖𝑗

𝑚

𝑖=0

 

where 𝑢∗ and 𝑣∗ are fixed parameter, respectively. Especially all boundary curves are 

obtained by evaluating 𝑆(𝑢, 0), 𝑆(𝑢, 1), 𝑆(0, 𝑣) and 𝑆(1, 𝑣). Control polygons for these 

Bézier arcs are subsets of control net. Because of this, patch interpolates all four corner 

control points. 

 Invariance under parameter transformation:  

∑∑𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

=∑∑𝐵𝑖
𝑚 (

𝑠 − 𝑎

𝑏 − 𝑎
)𝐵𝑗

𝑛 (
𝑡 − 𝑐

𝑑 − 𝑐
)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

 

 

where 𝑢, 𝑣 ∈ [0, 1] × [0, 1] and 𝑠, 𝑡 ∈ (𝑎, 𝑏) × (𝑐, 𝑑). 

 Pseudo local control: As with Bézier arc, tensor product Bézier surface cannot be locally 

modified. Change of position of point 𝑉𝑖𝑗 deforms the whole patch and the largest 

deviation occurs at  𝑢 = 𝑖 𝑚⁄   and 𝑣 = 𝑗 𝑛⁄ . 

 Invariance under affine transformation:   

𝑇(𝑆(𝑢, 𝑣)) = 𝑇(∑∑𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑉𝑖𝑗 

𝑛

𝑗=0

𝑚

𝑖=0

) = ∑∑𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑇(𝑉𝑖𝑗)

𝑛

𝑗=0

𝑛

𝑖=0

 

where 𝑇 is an affine transformation. 

 Partial derivative [10]: We define partial derivatives by equation  

𝛿𝑘+𝑙𝑆(𝑢, 𝑣)

𝛿𝑢𝑘𝛿𝑣𝑙
= 𝑚…(𝑚 − 𝑘 + 1)𝑛… . (𝑛 − 𝑙 + 1) ∑ 𝐵𝑖

𝑚−𝑘(𝑢)∑𝐵𝑗
𝑛−𝑙(𝑣)

𝑛−𝑙

𝑗=0

𝑚−𝑘

𝑖=0

∆𝑘,𝑙  𝑉𝑖𝑗 

Where ∆𝑘,𝑙  𝑉𝑖𝑗 is a vector defined recursively by following relations 

∆0,0 𝑉𝑖𝑗 = 𝑉𝑖𝑗 

∆1,0 𝑉𝑖𝑗 = 𝑉𝑖+1𝑗 − 𝑉𝑖𝑗 

∆0,1 𝑉𝑖𝑗 = 𝑉𝑖𝑗+1 − 𝑉𝑖𝑗 

∆𝑘,𝑙  𝑉𝑖𝑗 = ∆
1,0 (∆𝑘−1,𝑙  𝑉𝑖𝑗), 𝑘 > 0 

∆𝑘,𝑙  𝑉𝑖𝑗 = ∆
0,1 (∆𝑘,𝑙−1 𝑉𝑖𝑗), 𝑙 > 0 

 Degree elevation and reduction [10]: We can use similar algorithms as for curves. First 

one difference is that we have to specify degree to be elevated or decreased and second 

one is that we have to use Bézier arc degree elevation for each row (column) of control 

vertices.  
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 Variation diminishing property: “The surface does not exhibit the variation-diminishing 

property. The variation-diminishing property for bivariant surfaces is both undefined and 

unknown.” [2] 

 Enumerating tensor product Bézier surface can be done in two ways. First of them is to 

use de Casteljau algorithm for one fixed parameter, thus creating set of Bézier arcs for second 

parameter and then fixing second parameter and use de Casteljau algorithm for obtained points. 

 Second one is to use bilinear interpolation [10]. Let  

𝑏𝑖𝑗
0 (𝑢, 𝑣) = 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 

We define 𝑏𝑖𝑗
𝑙 (𝑢, 𝑣) as  

𝑏𝑖𝑗
𝑙 (𝑢, 𝑣) = (1 − 𝑣) ((1 − 𝑢)𝑏𝑖𝑗

𝑙−1(𝑢, 𝑣) + 𝑢𝑏𝑖+1𝑗
𝑙−1 (𝑢, 𝑣))

+ 𝑣 ((1 − 𝑢)𝑏𝑖𝑗+1
𝑙−1 (𝑢, 𝑣) + 𝑢𝑏𝑖+1𝑗+1

𝑙−1 (𝑢, 𝑣)) 

for 𝑙 = 1,… ,min(𝑚, 𝑛) , 𝑖 = 0,… ,𝑚 − 𝑙 and 𝑗 = 0,… , 𝑛 − 𝑙. If 𝑚 = 𝑛 then the result is point 

on patch 

𝑏00
𝑚 (𝑢, 𝑣) = 𝑆(𝑢, 𝑣) 

If this is not the case, then we are left with |𝑚 − 𝑛| + 1 points. We use de Casteljau algorithm 

with these points as input and parameter, in which direction surface has higher degree, to calculate 

point on patch. 

 Only way to change shape of patch is to change position of control vertices. 

1.4.3.2. Tensor product B-spline surface 

 We can apply the same idea for creating patch from B-spline curves. Patch is defined as 

in [2] 

𝑆(𝑢, 𝑣) =∑∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

 

Where 𝑢, 𝑣 ∈ [𝑢𝑘 , 𝑢𝑚+1) × [𝑢𝑙 , 𝑢𝑛+1), 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 are control vertices, 𝑈 =

 {𝑢𝑖}𝑖=0
𝑚+𝑘+1 and 𝑉 = {𝑣𝑖}𝑖=0

𝑛+𝑙+1 are knot vectors with maximum possible knot multiplicity of 𝑚 +

1 and 𝑛 + 1, respectively, and 𝑁𝑖
𝑘(𝑈, 𝑢) and 𝑁𝑗

𝑙(𝑉, 𝑣) are B-Spline basis functions of degree 𝑘 

and 𝑙, respectively. (Figure 1-21) 
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Figure 1-21 Tensor product B-spline patch 

 “Because the B-spline basis is used both to describe the boundary curves and to blend the interior 

of the surface, several properties of the B-spline surface are immediately known:” [2] 

 B-spline surface follows the shape of the control net 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛. 

 Surface domain is 𝑢, 𝑣 ∈ [𝑢𝑘 , 𝑢𝑚−𝑘) × [𝑢𝑙 , 𝑢𝑛−𝑙). 

 Local modelling: Patch segment corresponding to interval 𝑢, 𝑣 ∈ [𝑢𝑖, 𝑢𝑖+1) × [𝑢𝑗, 𝑢𝑗+1) 

for 𝑘 ≤  𝑖 ≤ 𝑚 − 𝑘 − 1, 𝑙 ≤ 𝑗 ≤ 𝑛 − 𝑙 − 1 is designated by (𝑘 + 1) ∙ (𝑙 + 1) control 

vertices 𝑉𝑖−𝑘𝑗−𝑙 , … , 𝑉𝑖𝑗. 

 Convex hull property: Every point of patch is enclosed inside the convex hull formed by 

control net because 

𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣) ≥ 0 

∑∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣)

𝑛

𝑗=0

𝑚

𝑖=0

= 1 

for 𝑢, 𝑣 ∈ [𝑢𝑘 , 𝑢𝑚+1) × [𝑢𝑙 , 𝑢𝑛+1). 

 Isocurves: 𝑢-isocurves and 𝑣-isocurves are obtained by equations  

 

𝑆(𝑢, 𝑣∗) =∑𝑁𝑖
𝑘(𝑈, 𝑢)

𝑚

𝑖=0

∑𝑁𝑗
𝑙(𝑉, 𝑣∗)𝑉𝑖𝑗

𝑛

𝑗=0

 

𝑆(𝑢∗, 𝑣) =∑𝑁𝑗
𝑙(𝑉, 𝑣)

𝑛

𝑗=0

∑𝑁𝑖
𝑘(𝑈, 𝑢∗)𝑉𝑖𝑗

𝑚

𝑖=0

 

where 𝑣∗ and 𝑢∗ are fixed parameter, respectively, hence isocurves are B-spline curves 

of degree 𝑘 and 𝑙, respectively. Boundary curves can be obtained by evaluating 

𝑆(𝑢, 0), 𝑆(𝑢, 1), 𝑆(0, 𝑣) and 𝑆(1, 𝑣). Subset of control net is control polygon for these 

curves. 

 Invariance under affine transformation:   

𝑇(𝑆(𝑢, 𝑣)) = 𝑇(∑∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣)

𝑛

𝑗=0

𝑚

𝑖=0

𝑉𝑖𝑗) = ∑∑𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣)𝑇(𝑉𝑖𝑗)

𝑛

𝑗=0

𝑚

𝑖=0

 

where 𝑇 is an affine transformation. 

 Partial derivative [9]: We define partial derivatives by equation  
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𝛿𝑝+𝑞𝑆(𝑢, 𝑣)

𝛿𝑢𝑝𝛿𝑣𝑞
= 𝑚…(𝑚 − 𝑝 + 1)𝑛… . (𝑛 − 𝑞 + 1)∑𝑁𝑖

𝑘−𝑝(𝑈, 𝑢)∑𝑁𝑗
𝑙−𝑞(𝑉, 𝑣)

𝑙−𝑞

𝑗=0

𝑘−𝑝

𝑖=0

∆𝑝,𝑞 𝑉𝑖𝑗 

where ∆𝑝,𝑞 𝑉𝑖𝑗 is vector defined recursively by following relations 

∆0,0 𝑉𝑖𝑗 = 𝑉𝑖𝑗 

∆1,0 𝑉𝑖𝑗 =
𝑉𝑖+1𝑗 − 𝑉𝑖𝑗

𝑢𝑖+𝑘+1 − 𝑢𝑖+1
 

∆0,1 𝑉𝑖𝑗 =
𝑉𝑖𝑗+1 − 𝑉𝑖𝑗

𝑣𝑖+𝑙+1 − 𝑣𝑖+1
 

∆𝑝,𝑞 𝑉𝑖𝑗 = ∆
1,0 (∆𝑝−1,𝑞 𝑉𝑖𝑗) =

∆𝑝−1,𝑞 𝑉𝑖+1𝑗 − ∆
𝑝−1,𝑞 𝑉𝑖𝑗

𝑢𝑖+𝑘+1 − 𝑢𝑖+𝑝
, 𝑝 > 0 

∆𝑝,𝑞 𝑉𝑖𝑗 = ∆
0,1 (∆𝑝,𝑞−1 𝑉𝑖𝑗) =

∆𝑝,𝑞−1 𝑉𝑖𝑗+1 − ∆
𝑝,𝑞−1 𝑉𝑖𝑗

𝑣𝑖+𝑙+1 − 𝑣𝑖+𝑞
, 𝑞 > 0 

 Variation diminishing property: “The variation-diminishing property for bivariate 

surfaces is both undefined and unknown.” [2] 

Boehm’s algorithm for knot insertion and knot removal algorithm can be both easily 

modified for patch. We need to determine which knot vector will be changed, then increase or 

decrease number of control points in given parametric direction and lastly compute new control 

points for each row (column) of control vertices. 

 Enumeration of tensor product B-spline patch is basically modified de Boor algorithm. 

First we evaluate de Boor algorithm multiple times for each row or column, depending on chosen 

parametric direction, of control vertices for first parameter. Obtained points are now used for one 

more de Boor algorithm but now for second parametric direction. Result is point on patch. 

 

1.4.4. Rational surfaces 

 Tensor product surfaces described so far have been integral surfaces. A rational surface 

𝑆(𝑢, 𝑣) is defined as a central projection of integral surface 𝑆𝑤(𝑢, 𝑣) to the hyperplane 𝑊 = 1. 

𝑆𝑤(𝑢, 𝑣) = 𝑆̅(𝑢, 𝑣) =  ∑∑𝑃𝑖
𝑚(𝑢)𝑃𝑗

𝑛(𝑣)𝑉𝑖𝑗
𝑤

𝑙

𝑗=0

𝑘

𝑖=0

 

where 𝑉𝑖𝑗
𝑤 = (𝑤𝑖𝑗𝑋𝑖𝑗 , 𝑤𝑖𝑗𝑌𝑖𝑗 , 𝑤𝑖𝑗𝑍𝑖𝑗 , 𝑤𝑖𝑗), 𝑖 = 0,… , 𝑘, 𝑗 = 0,… , 𝑙  are control points, 𝑃𝑖

𝑚(𝑢) and 

𝑃𝑖
𝑛(𝑣) are univariate blending functions of degree 𝑚 and 𝑛, respectively. We can express 𝑆(𝑢, 𝑣) 

as 

𝑆(𝑢, 𝑣) =
�̅�(𝑢, 𝑣)

𝑊(𝑢, 𝑣)
=
∑ ∑ 𝑃𝑖

𝑚(𝑢)𝑃𝑗
𝑛(𝑣)𝑤𝑖𝑗𝑉𝑖𝑗

𝑙
𝑗=0

𝑘
𝑖=0

∑ ∑ 𝑃𝑠
𝑚(𝑢)𝑃𝑡

𝑛(𝑣)𝑤𝑠𝑡
𝑙
𝑡=0

𝑘
𝑠=0

=∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑙

𝑗=0

𝑘

𝑖=0
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𝑅𝑖𝑗(𝑢, 𝑣) =
𝑃𝑖
𝑚(𝑢)𝑃𝑗

𝑛(𝑣)𝑤𝑖𝑗

∑ ∑ 𝑃𝑠
𝑚(𝑢)𝑃𝑡

𝑛(𝑣)𝑤𝑠𝑡
𝑙
𝑡=0

𝑘
𝑠=0

 

where the 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 are control points, 𝑤𝑖𝑗 ≥ 0 are their weights, 

𝑃𝑖
𝑚(𝑢), 𝑃𝑖

𝑛(𝑣) are univariate blending functions of degree 𝑚 and 𝑛 and 𝑅𝑖𝑗(𝑢, 𝑣) is bivariate 

blending function with degree 𝑚 and 𝑛 in respective parametric directions. Because each 

𝑅𝑖𝑗(𝑢, 𝑣) is rational polynomial we call this kind of surface rational one. 

1.4.4.1. Rational Bézier surface 

 Rational Bézier surface is defined by equation as in [5] 

𝑆(𝑢, 𝑣) =
∑ ∑ 𝐵𝑖

𝑚(𝑢)𝐵𝑗
𝑛(𝑣)𝑤𝑖𝑗𝑉𝑖𝑗

𝑛
𝑗=0

𝑚
𝑖=0

∑ ∑ 𝐵𝑠
𝑚(𝑢)𝐵𝑡

𝑛(𝑣)𝑛
𝑡=0

𝑚
𝑠=0 𝑤𝑠𝑡

=∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

 

𝑅𝑖𝑗(𝑢, 𝑣) =
𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑤𝑖𝑗

∑ ∑ 𝐵𝑠
𝑚(𝑢)𝐵𝑡

𝑛(𝑣)𝑛
𝑡=0

𝑚
𝑠=0 𝑤𝑠𝑡

 

where 𝑢, 𝑣 ∈ [0, 1] × [0, 1], 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚 and 𝑗 = 0,… , 𝑛, are control vertices, 𝑤𝑖𝑗 ≥ 0 are 

their weights, 𝑚 and 𝑛 are degrees of said patch in 𝑢 and 𝑣 parametric direction, 𝐵𝑖
𝑚(𝑢), 𝐵𝑖

𝑛(𝑣) 

are Bernstein polynomials of degree 𝑚 and 𝑛, respectively, and 𝑅𝑖𝑗(𝑢, 𝑣) is bivariate blending 

function with degree 𝑚 and 𝑛 in respective parametric directions. 

Properties of this kind of patch are the same as those of integral Bézier surface apart from these 

[9]:  

 Convex hull property: If 𝑤𝑖𝑗 ≥ 0, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 then every patch point lies  

in the convex hull formed by control net. 

 Invariance under projective transformation: 

𝑃(𝑆(𝑢, 𝑣)) = 𝑃 (∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

) = ∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑃(𝑉𝑖𝑗)

𝑛

𝑗=0

𝑚

𝑖=0

 

where 𝑃 is an projective transformation. This is stronger condition than invariance under 

affine transformation [3]. 

 Operations of degree elevation and reduction are same as for integral Bézier surface,  

but they need to work with expanded affine coordinates of control points.  

Enumeration of a rational Bézier patch can be done via de Casteljau algorithm or with bilinear 

interpolation. As with all algorithms for enumeration of rational curves and surfaces, we can either 

project each intermediate result to hyperplane 𝑊 = 1 or project only final vertex to said 

hyperplane. 
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1.4.4.2. Rational B-spline Surface - NURBS 

 “Rational B-spline surfaces, or NURBS, are the standard for surface modelling in much 

of computer graphics and computer aided design. Many of the typical surface forms used  

in computer graphics and computer aided design, such as flat planes and quadric surfaces, e.g., 

cylinders, spheres, ellipsoids of revolution, as well as more complex fully sculptured surfaces, are 

easily and accurately represented by rational B-spline surfaces. Thus, a single surface description, 

with excellent local and global control, can be used in a modeller or computer aided design system 

rather than having to deal with multiple types of surface descriptions.” [2] 

 We define NURBS – non-uniform rational B-spline surface as in [2] 

𝑆(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖

𝑘(𝑈, 𝑢)𝑁𝑗
𝑙(𝑉, 𝑣)𝑤𝑖𝑗𝑉𝑖𝑗

𝑛
𝑗=0

𝑚
𝑖=0

∑ ∑ 𝑁𝑠
𝑘(𝑈, 𝑢)𝑁𝑡

𝑙(𝑉, 𝑣)𝑛
𝑡=0

𝑚
𝑠=0 𝑤𝑠𝑡

=∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

 

𝑅𝑖𝑗(𝑢, 𝑣) =
𝑁𝑖
𝑘(𝑈, 𝑢)𝑁𝑗

𝑙(𝑉, 𝑣)𝑤𝑖𝑗

∑ ∑ 𝑁𝑠
𝑘(𝑈, 𝑢)𝑁𝑡

𝑙(𝑉, 𝑣)𝑛
𝑡=0

𝑚
𝑠=0 𝑤𝑠𝑡

 

where 𝑢, 𝑣 ∈ [𝑢𝑘, 𝑢𝑚+1) × [𝑢𝑙 , 𝑢𝑛+1), 𝑉𝑖𝑗, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 are control vertices, 𝑤𝑖𝑗 ≥ 0 

are their weights, 𝑈 = {𝑢𝑖}𝑖=0
𝑚+𝑘+1 and 𝑉 =  {𝑣𝑖}𝑖=0

𝑛+𝑙+1 are knot vectors with maximum possible 

knot multiplicity of 𝑚 + 1 and 𝑛 + 1, respectively and 𝑁𝑖
𝑘(𝑈, 𝑢) and 𝑁𝑗

𝑙(𝑉, 𝑣) are B-Spline basis 

functions of degree 𝑘 and 𝑙, respectively. 

 Properties of this patch are same as properties of integral B-spline surface, apart  

from following [2]: 

 Convex hull property: If 𝑤𝑖𝑗 ≥ 0, 𝑖 = 0,… ,𝑚, 𝑗 = 0,… , 𝑛 then all patch point are 

contained in the convex hull formed by control net. 

 Invariance under projective transformation: 

𝑃(𝑆(𝑢, 𝑣)) = 𝑃 (∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑉𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

) = ∑∑𝑅𝑖𝑗(𝑢, 𝑣)𝑃(𝑉𝑖𝑗)

𝑛

𝑗=0

𝑚

𝑖=0

 

where 𝑃 is an projective transformation. 

 Knot insertion, knot removal and evaluation process are the same as for tensor B-spline 

surface, but they use homogenous coordinates of control points. 

Modified de Boor algorithm can be used for enumeration of NURBS patch. Algorithm 

works with homogenous coordinates and can either project each intermediate results  

to hyperplane 𝑊 = 1 or do it only for last one – point on patch. 
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2. Chapter – Specification  
 This chapter defines requirements and specification of software application. 

2.1. Goal 

Main purpose of this application is visualization of various types of curves (arcs and 

splines) and surfaces and in some cases also blending functions. User input consists of mainly 

mouse events and keyboard. User can modify various parameters for curves, splines and 

surfaces and to some degree also control 3D environment. 

 Application’s name is Splines & Surfaces (Figure 2-1). It has to be compatible with  

32-bit Windows XP, 64-bit Windows 7 and newer versions. Programming language chosen 

for this application is C++ and development environment Microsoft Visual Studio 2012. 

Application has appearance of Windows forms and uses OpenGL library to display 3D graphic 

objects created from user’s input. (Figure 2-2) 

 

Figure 2-1 Logo 
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Surfaces 
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Figure 2-2 Context diagram 
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2.2. Design and controls 

 Application has a menu strip, which provides access to groups of functions. First of them 

is focused on resetting application, saving current object, loading pre-created object or exit 

application. Next one covers scene, curve and patch options. Last three groups are used to create 

object form input. They are composed of arcs, splines and surfaces tab, each having multiple 

choices to choose from. All of them are described further below. 

Directly under menu strip buttons with icons are located. These provide accelerated 

access to functions: New file, save, load, resetting view, top view and all curves and surfaces. 

Functions for save and load file include dialog, where user can choose location and name of file. 

If cursor hovers above one of these icons, tool tip with description of selected function  

is displayed. 

 The largest part of main window is occupied by OpenGL viewport. Here all 3D graphic 

objects are displayed. Smaller auxiliary window is used to show blending functions. Elements 

to control parameters of arc, spline and surface are located below. This form is resizable. 

 Another window form serves as modifier of display settings. Secondary colour for spline, 

colour for surface, number of cells for grid, line, curve, patch line width, curve and surface 

precision can be changed here along with patch display mode. It also offers option to show or 

hide control vertices, control polygon, grid, coordinate axes, isocurves or point on an object, 

additional points illustrating enumeration and options to enable point or line smoothing. User can 

choose between orthographic and perspective projection. Secondary colour for splines and colour 

for surface can be set via colour dialog. Splines’ secondary colour is used for each odd segment 

to better illustrate segments. 

 Application has a separate window form to handle operations on knot vector. User can 

choose whether to modify 𝑈 or 𝑉 knot vector and type of operation. User can choose knot’s index 

and value. Options include setting up open and universal knot vector, changing value of a single 

knot, increasing its multiplicity or inserting and removing knot with given value.  

 One more window form is used to specify control point. If offers choice whether selected 

control point will be modified or new control point will be added to sequence. It is also possible 

to change only selected attributes of control point. 

In case of curves and splines, user defines control points (actual points or tangents)  

by first left mouse click to set 𝑥 and 𝑦 coordinate. Next mouse click sets 𝑧 coordinate to zero if 

right mouse button is pressed down or to cursor position in case of left button click. If 𝑧 coordinate 

is set and now right mouse button is pressed, sequence of control points is complete. In case  

of surfaces, application itself constructs control points and user can only modify them later. 

Control net for Bézier and B-spline patches can be initialized either with all points in a same 

plane, elevated with 𝑧 coordinate on an arc or random. Number of points in both parametric 

directions can be changed and scale of control net’s actual size is controllable. 

To create curve or surface user chooses object type from menu or clicks on button with 

icon and application then enumerates chosen curve or surface and displays it inside OpenGL 

viewport. User can change values of parameters modifying shape of curve via numeric boxes. 

Spline type can be chosen from a list. For some objects blending functions are drawn in auxiliary 

window. Each segment of spline is drawn with alternating colour. This colour can be changed in 
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display settings. In case of curve, point corresponding to highlight parameter is highlighted and 

in case of patches it is also highlighted, and isocurves for given highlight parameter are drawn 

with different colour. 

 If user wants to change position of any control points, he has to first select a control point. 

He has to hover mouse cursor around that point and if it is close enough, chosen point is 

highlighted. Then he can press left mouse button and sets up new coordinates by the same way as 

in case of a new point, but pressing right mouse button causes that point’s 𝑥 and 𝑦 coordinate will 

not change. During either creating new point or moving existing one, mouse cursor creates virtual 

point. Application shows coordinates of this virtual point. 

 If application is not in state of defining new point, either 𝑥 and 𝑦 or 𝑧 coordinate, pressing 

down right mouse button while inside OpenGL viewport opens context menu with options to add 

new point either at the end or begging of already defined sequence of control points, to specify 

vertex (opens new window form), to delete selected control point, to change multiplicity or weight  

of control point or to check one of these values. 

 In case of surfaces that require formal expressions, user can enter them into text boxes. 

Text boxes are labelled according to their purpose and if user hovers mouse cursors above any 

text box, tool tip with description of input for selected text box appears. Generally, expressions 

for curves have to define points in space, so each of them must contain separate expressions for 

𝑥, 𝑦 and 𝑧 coordinate. Intervals for 𝑢, 𝑣 (for given expressions) and rotation and consist of two 

separate numbers each. Text box that defines axis of rotation contains three separate numbers.  

 User can zoom in and out using mouse wheel and rotate view  

by pressing left mouse button while no point is selected in OpenGL viewport. Pressing arrows 

causes view to move in desired direction. View rotation is controlled by mouse move and new 

viewing angle can be accepted by pressing left mouse button once more or by pressing the right 

mouse button. 

 Blending functions are displayed in auxiliary window. If spline or patch uses knot vectors, 

actual knots are shown. User can choose between 𝑈 or 𝑉 knot vector and two operations. First 

one serves for knot value modification. User selects a knot by left mouse click in vicinity of that 

knot and by next left click defines new value for that knot. Second operation is intended for 

defining highlight parameter by left mouse click. In order to show form with knot vector options, 

user have to make right mouse click inside this window. 

 Application shows error message box every time an error is detected while initializing or 

working with graphic object. All those error are listed on the pageList 1 Error messages 79. 

Besides these, application also forbids action if it is not suitable or would cause an error (e.g. 

deleting point via context menu when no points is selected). Should any event like this happen, 

message box with error description is shown.  

 The User input for 3D window is summed up in the table of uses cases on the page 76. 

2.3. Data model 

 Each control points is stored with its 𝑥, 𝑦, 𝑧 coordinates, weight and multiplicity. Same 

structure is used for points on curve or patch. Objects are divided to two main categories, arcs or 
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splines and patches. Both of these classes share basic functions (setting control points, precision, 

highlight parameter, etc.) and have same output format. 

2.3.1. Arcs and splines 

Firstly we describe arcs and splines. Input for their evaluation consists of sequence  

of control points highlight parameter and curve precision, but it can also include other parameters 

(only these differences are mentioned below). The highlight parameter represents parametric 

value. If any control point has multiplicity greater than one, application creates new control point 

with same coordinates and it is added into sequence just behind said control point. Output is the 

same across all classes. It is sequence of points and each segment has assigned same number of 

points as defined precision (arcs / curves consists of only one segment). Point on arc or spline that 

corresponds to the value of highlight parameter is labelled, so it can be highlighted later on during 

visualization. As part of output, blending functions are calculated and displayed in auxiliary 

window. 

Types of supported curves are: 

1. Parametric curve  

We evaluate coordinate functions for all three coordinates (defined in 4-th text box). 

Input:  Three coordinate functions (not sequence of points as all other curves) 

Errors: Curve is degenerated to a single point. 

2. Bézier arc 

We evaluate integral Bézier arc using de Casteljau algorithm. De Casteljau algorithm can be 

illustrated for given parameter. 

Input:  No difference. 

Errors:Input consists of only 0 or 1 vertex. 

Methods: Degree elevation – raises degree of Bézier arc (and computes new control vertices). 

Degree reduction – decreases degree of Bézier arc (and computes new control vertices). 

3. Rational Bézier arc 

We evaluate rational Bézier arc using de Casteljau algorithm. De Casteljau algorithm can be 

illustrated for given parameter. 

Input: No difference. 

Errors: Input consists of only 0 or 1 vertex. 

Methods: Degree elevation – raises degree of rational Bézier arc (and computes new control 

vertices). 

Degree reduction – decreases degree of rational Bézier arc (and computes new control vertices). 

4. Cubic Hermite arc 

We construct two tangents from input control vertices and then evaluate cubic Hermite arc.  

Input: Sequence of 4 control points. 

Errors: Input consists of less than 4 vertices. 

5. Quintic Hermite arc 

We construct two tangents and two second derivatives vectors from input control vertices and 

then evaluate quintic Hermite arc.  

Input: Sequence of 6 control points. 
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Errors: Input consists of less than 6 vertices. 

 

 

6. Hermite spline 

First we compute tangents at control points according to end conditions (spline type). Then we 

evaluate Hermite spline. Computed tangents can be illustrated. 

Input: End condition (spline type), tangents. 

Errors: Input consists of less than 3 vertices. Incompatible end conditions (spline type). 

7. Cardinal spline 

First we compute new control points according to end condition (spline type). Then we 

evaluate Cardinal spline with respect to parameter 𝑠. 

Input: Parameter 𝑠, end condition (spline type), tangents. 

Errors: Input consists of less than 4 vertices. Incompatible end conditions (spline type). 

8. Bézier spline 

First we compute new control points according to type of spline. Then we use de Casteljau  

for each segment of integral cubic Bézier spline. In the case of approximation spline, control 

points for each segments, and in the case of interpolation spline 𝐷𝑖 can be shown. 

Input: Type of spline, tangents 

Errors: Input consists of less than 3 vertices.  

9. Rational Bézier spline 

First we compute new control points according to type of spline. Then we use de Casteljau  

for each segment of rational cubic Bézier spline. In the case of approximation spline, control 

points for each segments, and in the case of interpolation spline 𝐷𝑖 can be shown. 

Input: Type of spline, tangents 

Errors: Input consists of less than 3 vertices.  

10. Beta spline 

First we compute new control points according to end condition (spline type). Then we 

evaluate Beta spline with respect to 𝛽1 and 𝛽2. 

Input: Parameter 𝛽1, parameter 𝛽2, end condition (spline type), tangents. 

Errors: Input consists of less than 4 vertices. Incompatible end conditions (spline type). 

11. B-spline 

Depending on type of knot vector, we either create uniform or open knot vector. In the case  

of user defined vector we check this vector for size, knot multiplicity and property of non-

decreasing sequence. We solve any of these problems. Then we use de Boor algorithm for 

evaluation of point on B-spline. This algorithm can be illustrated for given parameter. 

Input: Knot vector, type of knot vector, degree. 

Errors: Input consists of less vertices than value of degree + 1. Enumeration interval is empty. 

Methods: Knot insertion – inserts new knot value into knot vector (and computes new control 

vertices). Knot removal – removes knot value from knot vector (and computes new control 

vertices) using Boehm’s algorithm. 

12. Rational B-spline - NURBS 
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Depending on type of knot vector, we either create uniform or open knot vector. In the case  

of user defined vector we check this vector for size, knot multiplicity and property of non-

decreasing sequence. We solve any of these problems. Then we use de Boor algorithm  

for evaluation of point on rational B-spline. This algorithm can be illustrated for given parameter. 

Input: Knot vector, type of knot vector, degree. 

Errors: Input consists of less vertices than value of degree + 1. Enumeration interval is empty. 

Methods: Knot insertion – inserts new knot value into knot vector (and computes new control 

vertices). Knot removal – removes knot value from knot vector (and computes new control 

vertices) using Boehm’s algorithm. 

2.3.2. Patches 

Secondly we describe patches. Again, input consists of few common arguments – two 

dimensional array of control vertices forming control net, highlight parameter (now two 

dimensional) and patch precision. Any differences will be mentioned below as before. Each one 

of classes have same output. It is two dimensional array of patch points and number of points  

in both dimensions equals to defined precision. Point on patch that corresponds to highlight 

parameter is labelled, so it can be highlighted later on during visualization. 

Types of supported patches: 

1. Parametric surface 

We evaluate coordinate functions for all three coordinates (defined in 9-th, 10-th and 11-th 

text box).  

Input: Three coordinate functions (not sequence of points as in case of all other surfaces) 

Errors: Surface is degenerated to a single point (empty enumeration interval or 9-th, 10-th and 

11-th text box defines only one points). 

2. Extruded surface 

Function evaluates extruded surface. All points of the first curve are translated by vector 

defined by second curve. 

Input: Two dimensional array of points, which are on two curves (defined via 5-th and 7-th text 

box or one is modelled by user using curve modelling tools and one defined via 7-th text box), 

domain for these text box definitions (two numbers in 1-st text box and 2-nd text box). 

Errors: At least one curve is degenerated to a single point (empty enumeration interval or 5-th 

and 7-th text box defines only two points). 

3. Surface of revolution 

Function evaluates surface of revolution by rotating curve around axis with respect to given 

angle. 

Input: Sequence of points, which are on curve (defined via 5-th text box or is created by user 

using curve modelling tools), domain for this text box definition (two numbers in 1-st text box), 

interval of revolution (two numbers in 3-rd text box), axis of rotation (3 numbers in 4-th text box). 

Errors: Whole curve is in plane perpendicular to rotation axis. Interval for revolution is empty. 

Curve is degenerated to a single point (empty enumeration interval or 5-th text box defines only 

one point). 

4. Linear Coons patch 

Function evaluates linear Coons patch. Displays blending functions. 
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Input: Two dimensional array of points, which are on two boundary curves (defined via 5-th and 

6-th text box), domain for these text box definitions (two numbers in 1-st text box). 

Errors: Both curves are degenerated to a single point (empty enumeration interval or 5-th and 6-

th text box defines only one point each). 

5. Bilinear Coons patch 

Function evaluates bilinear Coons patch. Displays blending functions. 

Input: Two dimensional array of points, which are on four boundary curves (defined via 5-th 

 to 8-th text boxes), domain for these text box definitions (two numbers in 1-st and 2-nd text box). 

Errors: Both boundary curves for 𝑢 and/or 𝑣 parametric direction are degenerated to a single 

point (empty enumeration interval or at least one pair of text boxes define only one point each). 

Boundary curves do not fulfil 𝐶0 compatibility. 

6. Partially bicubic Coons patch 

Function evaluates bilinear Coons patch. Displays blending functions. 

Input: Two dimensional array of points, which are on four boundary curves (defined via 5-th  

to 8-th text boxes), domain for these text box definitions (two numbers in 1-st and 2-nd text box). 

Errors: Both boundary curves for 𝑢 and/or 𝑣 parametric direction are degenerated to a single 

point (empty enumeration interval or at least one pair of text boxes define only one point each). 

Boundary curves (points on them) do not fulfil 𝐶0 compatibility. 

7. Bicubic Coons patch 

Function evaluates bicubic Coons patch. When it is initialised, control points are organised in 

a square with selectable size. Displays blending functions. 

Input: Two dimensional array of points, which consists of 4 control points, 8 tangents both for 𝑢 

and 𝑣 parametric direction and 4 twist vectors. Method for computing twist vectors. 

8. Bézier patch 

We evaluate Bézier patch using bilinear interpolation. Blending functions are calculated and 

displayed in auxiliary window. When it is initialised, control points are organised in a square with 

selectable size and have 𝑧 coordinate either set to 0, random value or points lie on half sphere. 

Displays blending functions. 

Input: No difference. 

Methods: Degree elevation – raises degree of Bézier patch in given parametric direction (and 

computes new control vertices). Degree reduction – decreases degree of Bézier patch in given 

parametric direction (and computes new control vertices). 

9. Rational Bézier patch 

We evaluate rational Bézier patch using bilinear interpolation. Blending functions are 

calculated and displayed in auxiliary window. When it is initialised, control points are organised 

in square with selectable size and have 𝑧 coordinate either set to 0, random value or points lie on 

half sphere. Displays blending functions. 

Input: No difference. 

Errors: Input consists of less than 3 non-collinear vertices with non-zero weight or all points with 

non-zero weights are in the same row or column. 

Methods: Degree elevation – raises degree of Bézier patch in given parametric direction (and 

computes new control vertices). Degree reduction – decreases degree of Bézier patch in given 

parametric direction (and computes new control vertices). 
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10. B-spline patch 

Depending on type of knot vectors, we either create uniform or open knot vectors. In the case 

of user defined vector we check this vector for size, knot multiplicity and property of non-

decreasing sequence. We solve any of these problems. Then we use de Boor algorithm  

for evaluation of point on B-spline surface. Blending functions are calculated and displayed  

in auxiliary window. When it is initialised, control points are organised in square with selectable 

size and have 𝑧 coordinate either set to 0, random value or points lie on half sphere. Displays 

blending functions. 

Input: Knot vectors, degree for both parametric directions, type of knot vectors. 

Errors: Input consists of less vertices than value of degree + 1 in either parametric direction. 

Enumeration interval is empty in either parametric direction. 

Methods: Knot insertion – inserts new knot value into knot vector for given parametric direction 

(and computes new control vertices). Knot removal – removes knot value from knot vector (and 

computes new control vertices) using Boehm’s algorithm. 

11. Rational B-spline patch - NURBS 

Depending on type of knot vectors, we either create uniform or open knot vector. In the case 

of user defined vector we check this vector for size, knot multiplicity and property of non-

decreasing sequence. We solve any of these problems. Then we use de Boor algorithm  

for evaluation of point on rational B-spline surface. Blending functions are calculated and 

displayed in auxiliary window. Displays blending functions. 

Input: Knot vectors, degree for both parametric directions, type of knot vectors. When it is 

initialised, control points are organised in square with selectable size and have 𝑧 coordinate either 

set to 0, random value or points lie on half sphere. 

Errors: Input consists of less vertices than value of degree + 1 in either parametric direction. 

Enumeration interval is empty in either parametric direction. Input consists of less than  

3 non-collinear vertices with non-zero weight or all points with non-zero weights are in the same 

row or column. 

Methods: Knot insertion – inserts new knot value into knot vector for given parametric direction 

(and computes new control vertices). Knot removal – removes knot value from knot vector (and 

computes new control vertices) using Boehm’s algorithm. 
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3. Chapter – Implementation  
This chapter describes implementation of Splines & Surfaces application. First we 

describe implementation of forms and then classes for curves and surfaces. 

3.1. Forms 

 Main component in the main form MainForm is 3D window. It consists of embedded 

OpenGL viewport. Its class can be downloaded from [14]. This viewport applies settings from 

DisplayOptionsForm. Projection type, point or line smoothing, line’s width, size of points, 

enumeration precision for objects, secondary spline and surface colour, patch display mode (point 

cluster, wireframe, shaded and shaded with reflections) and visibility of vertices, control polygon, 

grid, coordinate axes, isocurves, illustrating points or point on an object can be changed here.  

If any change is made, it takes effect after user clicks on Apply or Apply and close  button. 

MainForm can be resized by user. 

All points, lines and objects are visualised with method void UpdateWindow(), which 

calls whichever function it needs from following list:  

 void DrawAxes() 

 void DrawGrid(int n, double size) 

 void ShowXcoordinate(TVector point) 

 void ShowYcoordinate(TVector point) 

 void ShowZcoordinate(TVector point) 

 void ShowCoordinates(TVector point) 

 void ShowVertex(TVector points, GLfloat size, GLfloat r, GLfloat g, 

GLfloat b) 

 void ShowLine(TVector point1, TVector point2, GLfloat linewidth,  

GLfloat r, GLfloat g, GLfloat b) 

 void ShowPolyLine(vector<TVector> points, GLfloat linewidth, GLfloat 

r, GLfloat g, GLfloat b) 

 void ShowCurve(vector<TVector> points, bool smoothing,  

GLfloat linewidth, GLfloat r, GLfloat g, GLfloat b, GLfloat r2,  

GLfloat g2, GLfloat b2) 

 void ShowVertices(vector<TVector> points, GLfloat size, GLfloat r, 

GLfloat g, GLfloat b) 

 void ShowPatchPoints(vector< vector<TVector> > points, GLfloat size, 

GLfloat r, GLfloat g, GLfloat b) 

 void ShowPatchPointsFergusson(vector< vector<TVector> > points,  

GLfloat size, GLfloat r, GLfloat g, GLfloat b) 

 void ShowControlNet(vector< vector<TVector> > points,  

GLfloat linewidth, GLfloat r, GLfloat g, GLfloat b) 

 void DrawPatch(vector< vector<TVector> > points,  

vector< vector<TVector> > normals) 

 void DrawWireFrame(vector< vector<TVector> > points,  

GLfloat linewidth, GLfloat r, GLfloat g, GLfloat b) 

 void DrawIsoCurves(vector< vector<TVector> > points,  

GLfloat linewidth, GLfloat r, GLfloat g, GLfloat b) 
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View rotation is processed in void UpdateProjectionMatrix() and projection type is set  

in void SetProjectionType(). 

 Application handles mouse events for both mouse click and mouse move according  

to table of use cases on the page 76. It has integer values assigned to each system state, curve or 

surface type and others. 

Creating coordinates for defining and moving points is done with TVector 

RayIntersection(TVector RayDirection, TVector RayOrigin, TVector PlaneNormal, 

TVector PlaneOrigin) method. Functions   

 tuple<int, int, double> NearestVertex(vector<TVector> Points,  

TVector RayDirection, TVector RayOrigin, double MaxRadius)  

 tuple<int, double> NearestTangent(TVector RayDirection,  

TVector RayOrigin, double MaxRadius) 

 tuple<int, int, double> NearestVertex(vector< vector<TVector> > 

Points, TVector RayDirection, TVector RayOrigin, double MaxRadius) 

depending on type of object, find closest point to mouse cursor. If it is closer than given threshold, 

it will become selected. 

 By clicking on whichever object type in menu or tool strip, either void 

ComputeCurve(int type) or void ComputeSurface(int type) are called. Both initialise 

chosen object and use its enumeration function create array of curve or surface points together 

with point on object and isocurves for surface. In some cases blending functions are also drawn 

inside Auxiliary window with void DrawPolynomials(int type) function. This function calls 

subroutines for enumeration of blending function in respective class. If rational Bézier or 

B-spline surface is modelled and weight of control point in 𝑖-th row and 𝑗-th column is 

changed, rational blending functions are displayed either for 𝑖-th row or 𝑗-th column  

for parametric direction 𝑢 and 𝑣, respectively. Numeric box for changing 𝑖 or 𝑗, 

respectively, manually is located inside Control Box. 

Control Box groups various functionality. It offers selection of parametric 

direction, value of highlight parameter, degree for both parametric directions, multiplicity, 

weight and 𝛽1, 𝑠 and 𝛽2 parameters. Values of multiplicity and weight are used in procedure of 

modifying control point via Context menu. Other items include text boxes and group of parameters 

for influencing initialisation of control net. If user wants construct affine surface from modelled 

curve, he has to check check box with this functionality. 

Parameters for curves and patches, namely parameter 𝑠, 𝛽1, 𝛽2, degrees 𝑛 and 𝑚 and 

values of highlight parameter, multiplicity and weight of control vertex are being changed  

in numeric up and down boxes. These have set reasonable minimum and maximum value (e.g. 

parameters 𝑠, 𝛽1, multiplicity and weight cannot be negative etc.). Knot vectors are stored in 

dynamically allocated array. 

Initialisation of control net for tensor surfaces and bicubic Coons patch is modified  

by parameters in Control net panel. Created control net is uniformly sampled square shaped object 

with either 𝑧 coordinate of its control points 𝑧 = 0 for planar, 𝑧 elevated to a half-sphere or 𝑧 is 

random. Number of points in both parametric directions is controlled by respective numeric boxes 
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and size of this net is controlled by Scale numeric box. For bicubic Coons patch, only this value 

is used. 

For surfaces, normals are calculated in void CalculateNormals(vector< 

vector<TVector> > points) method with surface points as parameter. If object is already 

created, and parameters or position of control points are changed, method void Recompute() is 

called, which subsequently call functions for computing curve or surface, depending on object 

type. 

 Inside 3D window, Context menu can be displayed. It offers options to add new control 

points on the end or begging of control points’ sequence, to specify vertex, which will open 

SpecifyVertexForm, to delete control point, to change or to show its multiplicity or weight. 

SpecifyVertexForm enables user to change position and other attributes of point  

with much higher precision than just by mouse click. Specified vertex could be either already 

created, or new one. Checked checkboxes select which values will be used during specification. 

Subroutine void SpecifyVertex() is called to update or to create new point with specified 

attributes. 

 Save file function void SaveFile() saves current graphic object as “.txt” file. Load 

function void LoadFile() processes loaded file token by token and creates new object from 

read data. This functions calls void UpdateUI() method to update all numeric boxes with loaded 

values. 

KnotVectorOptionsForm is a form, which enables user to control knot vector. Form is 

resizable, so in the case of long knot vector it is possible to show all of its content. Numeric boxes 

for specifying index, its value, choice of parametric direction and options for setting knot vector 

to open, uniform, changing value specified by index, increasing multiplicity of knot specified  

by index and inserting or removing knot with specified value. Each change of knot index or value 

causes option labels to refresh with current index or value. Every operation has to be confirmed 

by Apply or Apply and close button. After mouse cursor leaves Apply, modified knot vector is 

refreshed in respective label. 

Function void ModifyKnotVector() is called in both cases to handle chosen operation. 

In the case of inserting or removing knot, it first verifies if value of knot is in suitable interval and 

if  value of removed knot is in knot vector. Then it calls subroutines 

 void UpdateKnotVector(int type, int i, double value) 

type: defines parametric direction 

i: specifies index of modified knot 

value: new value of specified knot 

Updates knot with specified index to new value. 

 void IncreaseKnotMultiplicity(int type, double value) 

type: defines parametric direction 

value: new value of specified knot 

Increases multiplicity of specified knot. 

 void InsertKnot(int type, double value) 

type: defines parametric direction 

value: value of inserted knot 
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Calls appropriate subroutine inside TNURBSpline or TNURBSurface class to insert 

new knot specified by value to knot vector. 

 void RemoveKnot(int type, double value) 

type: defines parametric direction 

value: value of removed knot 

Calls appropriate subroutine inside TNURBSpline or TNURBSurface class to remove 

knot specified by value from knot vector. 

 void SetKnotVector(int type) 

type: defines type of knot vector 

Changes type of knot vector to uniform, open or custom. 

All these functions call void SetKnotStrings() after successful operation. It refreshes strings  

of knots for KnotVectorOptionsForm. 

During changing knot value or inserting new knot, knot value is tested if it knot with same 

value already has maximum allowed multiplicity. It is performed by method 

bool CheckKnotMultiplicity(int type, double value) 

type: defines parametric direction 

value: value of tested knot 

In the case of increasing multiplicity of knot, it is tested if knot vector contains this knot. 

 Text boxes are evaluated by bool EvaluateTextBox(bool parametricsurface, bool 

parametriccurve) (where variables parametricsurface and parametriccurve specifies, 

which text boxes are enumerated) function for certain types of surfaces and parametric curve.  

It returns true if all content of all text boxes is properly defined and false otherwise. Application 

uses external DLL library, muparser. It can be downloaded from [15]. This library offers 

functionality needed to convert expression in a form of string to mathematical expression, which 

can be evaluated later. Result of this operation is sequence of points that are later used as boundary 

curves or axis of rotation. It is also used to convert contents of text boxes with intervals  

for boundary curves. 

 Input may consists of any combination of addition, subtraction, multiplication, division 

of numbers or functions, all of which have predefined keyword. They are listed in table  

of keywords on the page 78. Library recognizes constants 𝜋 and 𝑒, which have keywords pi  and 

e, respectively. 

 Application detects errors for graphic objects specified earlier. Whenever it happens or 

whenever user tries to make invalid operation, message box with appropriate text is displayed, 

informing user about error. List of error and information messages is on the page 79 and 80, 

respectively. 

Form AboutForm has only purpose to show information about version of software and its 

author. Icons for menu strip were created using screenshots from application. Only three icons 

for new, save and load file functions were downloaded from [16]. 
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3.2. Classes 

TVector class is used for storing points. It has double type variables for 𝑥, 𝑦, 𝑧, 𝑤 

coordinate and integer variable for multiplicity. Methods of this class include addition, 

subtraction, multiplication by scalar, multiplication by another vector both scalar and cross 

product, division by scalar, normalization and method for obtaining magnitude of vector. Actual 

sequence of points (used as input, output, and private variables inside individual classes) is stored 

in dynamically allocated array of points. In case of patches, this array is two dimensional. 

 TQuaternion class is similar to TVector, it has four double type variables  

for coordinates. Methods include addition, subtraction, multiplication by scalar and by another 

quaternion, division by scalar and methods for obtaining magnitude, inverse and normalized 

quaternion. 

 

Figure 3-1 Class structure 

 Class structure for graphic objects has root in TObject class. (Figure 3-1) It has integer 

variable for error code and precision. It has only one method. 

int GetError() 
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Returns integer code of an error. 

3.2.1. Curve classes 

 TCurve class contains all variables common to mostly all arcs and splines. Namely 

sequence of control points, points on curve, point on curve corresponding to highlight parameter, 

spline type, number of enumerated control points - precision and highlight parameter.  

Class methods include setting up control vertices, precision, highlight parameter and 

methods to obtain points on curve, control points and point on curve corresponding to highlight 

parameter. This list includes only functions, which are used during enumeration. 

TCurve 

void SetControlPoints(vector<TVector> points) 

points: sequence of control points 

Sets control points for curve. If any control point has multiplicity greater than one, it creates new 

control point with same coordinates and it is added into sequence just behind processed control 

point. 

void SetPrecision(int precision) 

precision: precision defines number of enumerated points 

Sets precision and clears current curve points. 

TParametricCurve 

void Init(vector<TVector> points, int precision, double parameter) 

points: curve points 

precision: number of enumerated points 

parameter: highlight parameter 

Initializes new points and other parameters for parametric curve. If all points have same 

coordinates detects an error. 

void ComputeCurve() 

Actual enumeration of curve points is done in MainForm using muparser library. Point on curve 

corresponding to highlight parameter is obtained for evaluated parametric value closest  

to highlight parameter. 

TBezierArc 

void Init(vector<TVector> points, int precision, double parameter,  

int isrational) 

points: sequence of control points 

precision: number of enumerated points 

parameter: highlight parameter 

isrational: defines whether curve is integral or rational Bézier arc 

Initializes new control points and other parameters for integral or rational Bézier arc. Tests 

number of points to catch an error if sequence does not have enough points. 
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void SetRationality(int isrational) 

isrational: defines whether curve is integral or rational Bézier arc 

Sets type of curve according to input. 

void DegreeElevation() 

Elevates degree of integral or rational Bézier arc and computes new control points. 

void DegreeReduction(int method) 

method: specifies method that is used to compute new control points 

Reduces degree of integral or rational Bézier arc by chosen method and computes new control 

points. 

double BernsteinPolynomial(double t, int n, int i) 

t: value, for which Bernstein polynomial is evaluated 

n: degree of Bernstein polynomial 

i: specifies 𝑖-th Bernstein polynomial to be evaluated 

This function recursively enumerates specified polynomial. It is used to show blending functions. 

double RationalPart(double t, int n) 

t: value, for which Bernstein polynomials are evaluated 

n: degree of Bernstein polynomials 

This function recursively enumerates denominator of rational polynomial. It is used to show 

blending functions for rational Bézier arc. 

void ComputeCurve() 

Computes points on integral or rational Bézier arc using de Casteljau algorithm. Point on curve 

corresponding to highlight parameter is obtained for evaluated parametric value closest  

to highlight parameter. Sequence of points corresponding to steps in de Casteljau algorithm  

for highlight parameter is created. 

THermiteArc 

void Init(vector<TVector> points, int precision, double parameter, int type) 

points: sequence of control points 

precision: number of enumerated points 

parameter: highlight parameter 

type:  defines whether arc is cubic or quintic 

Initializes new control points and other parameters for Hermite arc. Tests number of points  

to catch an error if sequence does not have enough points depeding on type of an arc. 

void CalculateHermitTangents() 

Depending on a type of Hermite arc calculates either two tangents or two tangents and two second 

derivatives from control vertices. 

double HermitePolynomial(double u, int n) 

u: value, for which cubic Hermite polynomial is evaluated 

n: specifies 𝑛-th cubic Hermite polynomial to be evaluated 



55 

 

This function enumerates specified cubic polynomial. It is used to show blending functions. 

double HermitePolynomialQuintic(double u, int n) 

u: value, for which quintic Hermite polynomial is evaluated 

n: specifies 𝑛-th quintic Hermite polynomial to be evaluated 

This function enumerates specified quintic polynomial. It is used to show blending functions. 

void ComputeCurve() 

Computes points on Hermite arc. Point on curve corresponding to highlight parameter is obtained 

for evaluated parametric value closest to highlight parameter. 

THermiteSpline 

void Init(vector<TVector> points, int precision, double parameter,  

int splinetype, TVector tangents[2]) 

points: sequence of control points 

precision: number of enumerated points for each segment 

parameter: highlight parameter 

splinetype: specifies end condition 

tangents[2]: two tangents for clamped spline 

Initializes new control points and other parameters for Hermite spline. Tests number of points 

to catch an error if sequence does not have enough points. 

void SetTangents(TVector tangents[2]) 

tangents[2]: two tangents for clamped spline 

Sets tangents for clamped spline. 

void SetSplineType(int splinetype) 

splinetype: spline type defines end condition 

Each end condition has assigned an integer number. Depending on its value, new control points 

satisfying chosen end condition are calculated. If spline type is incompatible, catches an error. 

double HermitePolynomial(double u, int n) 

u: value, for which cubic Hermite polynomial is evaluated 

n: specifies 𝑛 − 𝑡ℎ cubic Hermite polynomial to be evaluated 

This function enumerates specified cubic polynomial. It is used to show blending functions. 

void CalculateTangents() 

Calculates tangent in each control point.  

vector<TVector> SolveSystem(vector< vector<double> > A, vector<TVector> x) 

A: system of linear equations 

x: vector consisting of constant terms 

Finds solution for given system of linear equations using Gauss elimination. 

void ComputeCurve() 



56 

 

Computes points on Hermite spline. Each segment is treated as Hermite arc and it is evaluated  

by THermiteArc’s function. Point on curve corresponding to highlight parameter is obtained  

for evaluated parametric value closest to highlight parameter. 

TCardinalSpline 

void Init(vector<TVector> points, int precision, double parameter,  

double sparameter, int splinetype, TVector tangents[2]) 

points: sequence of control points 

precision: number of enumerated points for each segment 

parameter: highlight parameter 

sparameter: parameter 𝑠 

splinetype:  specifies end condition 

tangents[2]: two tangents for clamped spline 

Initializes new control points and other parameters for Cardinal spline. Tests number of points  

to catch an error if sequence does not have enough points. 

void SetSParameter(double sparam) 

sparameter:  parameter 𝑠 

Sets value of parameter 𝑠. 

void SetTangents(TVector tangents[2]) 

tangents[2]: two tangents for clamped spline 

Sets tangents for clamped spline. 

void SetSplineType(int splinetype) 

splinetype: spline type defines end condition 

Each end condition has assigned an integer number. Depending on its value, new control points 

satisfying chosen end condition are calculated. If spline type is incompatible, catches an error. 

double CardinalPolynomial(double u, int n) 

u: value, for which cubic cardinal polynomial is evaluated 

n: specifies 𝑛-th cubic cardinal polynomial to be evaluated 

This function enumerates specified polynomial. It is used to show blending functions. 

void ComputeCurve() 

Computes points on Cardinal spline. Point on curve corresponding to highlight parameter is 

obtained for evaluated parametric value closest to highlight parameter. 

TBezierSpline 

void Init(vector<TVector> points, int precision, double parameter,  

int typeisrational, bool clamped, TVector tangents[2]) 

points:  Sequence of control points 

precision:  Number of enumerated points for each segment 

parameter:  highlight parameter 

typeisrational: defines whether curve is integral or rational and interpolation or              

   approximation Bézier spline 
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clamped:  defines whether spline is clamped or not 

tangents[2]:  two tangents for clamped spline 

Initializes new control points and other parameters for integral or rational and approximation  

or interpolation Bézier spline. Tests number of points to catch an error if sequence does not have 

enough points. 

void SetRationality(int isrational) 

isrational: defines whether curve is integral or rational Bézier spline 

Sets type of spline according to input. 

void SetTangents(TVector tangents[2]) 

tangents[2]: two tangents for clamped spline 

Sets tangents for clamped spline. 

void CreateNewControlPoints() 

Creates control points for each segment depending on type of spline and whether it is clamped 

spline or not.  

vector<TVector> SolveSystem(vector< vector<double> > A, vector<TVector> x) 

A: system of linear equations 

x: vector consisting of constant terms 

Finds solution for given system of linear equations using Gauss elimination. 

void ComputeCurve() 

Computes points on integral or rational Bézier spline. Each segment is treated as integral or 

rational Bézier arc and it is evaluated by TBezierArc’s function. Point on curve corresponding 

to highlight parameter is obtained for evaluated parametric value closest to highlight parameter. 

TBetaSpline 

void Init(vector<TVector> points, int precision, double parameter, double 

beta1, double beta2, int splinetype, TVector tangents[2]) 

points: sequence of control points 

precision: number of enumerated points for each segment 

parameter: highlight parameter 

beta1:  parameter 𝛽1 

beta2:  parameter 𝛽2 

splinetype: specifies end condition 

tangents[2]: two tangents for clamped spline 

Initializes new control points and other parameters for Beta spline. Tests number of points 

to catch an error if sequence does not have enough points. 

void SetBeta(double beta1, double beta2) 

beta1:  parameter 𝛽1 

beta2:  parameter 𝛽2 

Sets values of parameters 𝛽1 and 𝛽2. 
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void SetTangents(TVector tangents[2]) 

tangents[2]: two tangents for clamped spline 

Sets tangents for clamped spline. 

void SetSplineType(int splinetype) 

splinetype: spline type defines end condition 

Each end condition has assigned an integer number. Depending on its value, new control points 

satisfying chosen end condition are calculated. If spline type is incompatible, catches an error. 

double BetaPolynomial(double u, int n) 

u: value, for which cubic Hermite polynomial is evaluated 

n: specifies 𝑛-th cubic Hermite polynomial to be evaluated 

This function enumerates specified polynomial. It is used to show blending functions. 

void ComputeCurve() 

Computes points on Beta spline. Point on curve corresponding to highlight parameter is obtained 

for evaluated parametric value closest to highlight parameter. 

TNURBSpline  

void Init(vector<TVector> points, int precision, vector<double> knots,  

double parameter, int degree, int isrational, int knotvectortype) 

points:  sequence of control points 

precision:  number of enumerated points for each segment 

knots:   knot vector 

parameter:  highlight parameter 

degree:  degree of spline 

isrational:  defines whether curve is integral or is rational B-spline 

knotvectortype:  specifies type of knot vector 

Initializes new control points and other parameters for integral or rational B-spline.  

void SetRationality(int isrational) 

isrational: defines whether curve is integral or rational B-spline 

Sets type of curve according to input.  

void SetDegree(int degree) 

degree: degree of spline 

Sets degree of spline. Tests number of points to catch an error if sequence does not have enough 

points. 

void SetKnotVectorType(int knotvectortype) 

knotvectortype: specifies type of knot vector 

Sets type of knot vector. 

void SetKnotVector(vector<double> knots) 

knots:  knot vector 
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Sets knot vector for B-spline. Depending on type of knot vector, either creates knot vector 

(in the case of uniform or open knot vector) or checks user defined knot vector for size, maximum 

multiplicity and non-decreasing property. Any problem is solved either by sorting, deleting or 

creating new knots. If enumeration interval is empty, catches an error. 

void KnotRemoval(double knotvalue) 

knotvalue: knot value, which is removed from knot vector  

Removes knot from knot vector and computes new control vertices, both for integral or rational 

B-spline. 

void KnotInsertion(double knotvalue) 

knotvalue: knot value, which is inserted to knot vector  

Inserts knot into knot vector using Boehm’s algorithm and computes new control vertices, both 

for integral or rational B-spline. 

double NURBSPolynomial(double u, int p, int i) 

u: value, for which B-spline polynomial is evaluated 

p: degree of B-spline polynomial 

i: specifies 𝑖-th B-spline polynomial to be evaluated 

This function recursively enumerates specified polynomial. It is used to show blending functions. 

double RationalPart(double u, int p) 

u: value, for which B-spline polynomials are evaluated 

p: degree of B-spline polynomials 

This function recursively enumerates denominator of rational polynomial. It is used to show 

blending functions for NURBS spline. 

void ComputeCurve() 

Computes points on integral or rational B-spline using de Boor algorithm. Point on curve 

corresponding to highlight parameter is obtained for evaluated parametric value closest  

to highlight parameter. Sequence of points corresponding to steps in de Boor algorithm for 

highlight parameter is created. 

3.2.2. Surface classes 

TPatch class contains all variables common to mostly all arcs and splines. Namely two 

dimensional array of control points and points on patch, point on patch corresponding to highlight 

parameter, precision and highlight parameter. This list includes only functions, which are used 

during enumeration. 

TPatch  

void SetControlPoints(vector< vector<TVector> > points) 

points: two dimensional array of control points 

Sets control net for patch. 

void SetPrecision(int precision) 

precision: precision defines both sizes of two dimensional array for enumerated points 
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Sets precision and clears current patch points. 

TParametricSurface 

void Init(vector< vector<TVector> > points, int precision, double parameter[2]) 

points: two dimensional array of surface points 

precision: defines both sizes of two dimensional array for enumerated points 

parameter[2]: highlight parameter 

Initializes new points and other parameters for parametric curve. If all points have same 

coordinates detects an error. 

void ComputePatch() 

Actual enumeration of surface points is done in MainForm using muparser library. Point on patch 

and isocurves corresponding to highlight parameter are obtained for evaluated parametric value 

closest to highlight parameter. 

TAffineSurface  

void Init(vector< vector<TVector> > points, TVector axis, int precision, double 

parameter[2], double angle[2], int type) 

points: two sequences of control points 

precision: defines both sizes of two dimensional array for enumerated points 

parameter[2]: highlight parameter 

angle[2]: defines angle of rotation 

type: defines whether result is surface of revolution or extruded surface 

Initializes new control points and other parameters for surface of revolution or extruded surface. 

Depending on type tests, if one or both curves are degenerated to a single point or if interval  

for rotation is empty or if curve lies in plane perpendicular to axis of rotation. 

void ComputePatch() 

Computes points on surface of revolution or extruded surface. In case of surface of revolution, 

spherical interpolation is used on quaternions to evaluate points on patch. Point on patch and 

isocurves corresponding to highlight parameter are obtained for evaluated parametric value 

closest to highlight parameter. 

TCoonsPatch 

void Init(vector< vector<TVector> > points, int precision, double parameter[2], 

int type, int twisttype, int scale) 

points: four sequences of control points 

precision: defines both sizes of two dimensional array for enumerated points 

parameter[2]: highlight parameter 

type: defines whether patch is linear, bilinear, partially bicubic or bicubic Coons 

patch.  

twisttype: defines method for computing twist vectors 

scale: defines scale of created control net for bicubic Coons patch 
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Initializes new control points and other parameters for Coons patch. Detects if boundary curves 

are degenerated to a single point or if they fulfil 𝐶0 compatibility. In the case of bicubic Coons 

patch sets twist vectors according to specified type. 

void SetTwistType(int twisttype) 

twisttype: defines method for computing twist vectors 

Sets type of twist vector. 

void SetControlPointsandTangents() 

If bicubic Coons patch is initialized, sets up control points for it scaled by scale modifier. 

void CalculateTangents() 

Calculates tangents and twist vectors, depending on their type, from control points.  

double HermitePolynomial(double u, int n) 

u: value, for which cubic Hermite polynomial is evaluated 

n: specifies 𝑛-th cubic Hermite polynomial to be evaluated 

This function enumerates specified cubic polynomial. It is used to show blending functions. 

void ComputePatch() 

Computes points on linear, bilinear, partially bicubic or bicubic Coons patch. Point on patch and 

isocurves corresponding to highlight parameter are obtained for evaluated parametric value 

closest to highlight parameter. 

TBezierSurface 

void Init(vector< vector<TVector> > points, int precision, double parameter[2], 

int isrational) 

points: two dimensional array of control points 

precision: defines both sizes of two dimensional array for enumerated points 

parameter[2]: highlight parameter 

isrational: defines whether patch is integral or rational Bézier patch 

Initializes new control net and other parameters for integral or rational Bézier patch.  

void SetRationality(int isrational) 

isrational: defines whether patch is integral or rational B- patch 

Sets type of patch according to input. Detects if input consists of less than 3 non-collinear vertices 

with non-zero weight or all points with non-zero weights are in the same row or column. 

void DegreeElevation(int type) 

type: defines parametric direction for degree elevation 

Elevates degree of integral or rational Bézier patch in given parametric direction and computes 

new control points. 

void DegreeReduction(int type, int method) 

type:  defines parametric direction for degree elevation 

method:  specifies method that is used to compute new control points 
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Reduces degree of integral or rational Bézier patch in given parametric direction by chosen 

method and computes new control points. 

double BernsteinPolynomial(double t, int n, int i) 

t: value, for which Bernstein polynomial is evaluated 

n: degree of Bernstein polynomial 

i: specifies 𝑖-th Bernstein polynomial to be evaluated 

This function recursively enumerates specified polynomial. It is used to show blending functions. 

double RationalPart(int type, int cr, double t, int n) 

type: specifies parametric direction 

cr: specifies column or row of control net 

t: value, for which Bernstein polynomials are evaluated 

n: degree of Bernstein polynomials 

This function recursively enumerates denominator of rational polynomial. It is used to show 

blending functions for rational Bézier patch. 

void ComputePatch() 

Computes points on integral or rational Bézier patch by using bilinear interpolation. Point  

on patch and isocurves corresponding to highlight parameter are obtained for evaluated 

parametric value closest to highlight parameter. 

TNURBSurface 

void Init(vector< vector<TVector> > points, int precision, vector<double> 

knotsu, vector<double> knotsv, double parameter[2], int degree[2],  

int isrational, int knotvectortype[2]) 

points: two dimensional array of control points 

precision: defines both sizes of two dimensional array for enumerated points 

knotsu: knot vector for parametric direction 𝑢 

knotsv: knot vector for parametric direction 𝑣 

parameter[2]: highlight parameter 

degree[2]: degree of patch in both parametric directions 

isrational: defines whether patch is integral or rational B-spline patch 

knotvectortype[2]: specifies types of knot vectors 

Initializes new control net and other parameters for integral or rational B-spline patch. 

void SetRationality(int isrational) 

isrational: defines whether patch is integral or rational B-spline 

Sets type of patch according to input. Detects if input consists of less than 3 non-collinear vertices 

with non-zero weight or all points with non-zero weights are in the same row or column. 

void SetDegree(int degree[2]) 

degree[2]: degree of patch in both parametric directions 

Set degree of spline. Tests number of points to catch an error if sequence does not have enough 

points. 

void SetKnotVectorType(int knotvectortype[2]) 
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knotvectortype[2]: specifies types of both knot vectors 

Sets type of knot vector. 

void SetKnotVectorType(int type, int knotvectortype) 

type: specifies which knot vector is modified 

knotvectortype: specifies type of knot vector 

Sets type of knot vector for chosen knot vector. 

void SetKnotVector(int type, vector<double> knots) 

type: specifies which knot vector is modified 

knots: knot vector 

Sets knot vector for NURBS surface. Depending on type of knot vector, either creates knot vector 

(in the case of uniform or open knot vector) or checks user defined knot vector for size, maximum 

multiplicity and non-decreasing property. Any problem is solved either by sorting, deleting or 

creating new knots. If enumeration interval is empty, catches an error.  

double NURBSPolynomial(int type, double u, int p, int i) 

type: specifies knot vector on which B-spline polynomial is evaluated 

u: value, for which B-spline polynomial is evaluated 

p: degree of B-spline polynomial 

i: specifies 𝑖-th B-spline polynomial to be evaluated 

This function enumerates specified polynomial. It is used to show blending functions. 

double RationalPart(int type, int cr, double t, int n) 

type: specifies parametric direction 

cr: specifies column or row of control net 

t: value, for which rational B-spline polynomials are evaluated 

n: degree of B-spline polynomials 

This function recursively enumerates denominator of rational polynomial. It is used to show 

blending functions for rational NURBS patch. 

void KnotRemoval(int type, double knotvalue) 

type:  specifies knot vector from which knot is removed 

knotvalue: knot value, which is removed from knot vector  

Removes knot from specified knot vector and computes new control vertices, both for integral or 

rational B-spline patch. 

void KnotInsertion(int type, double knotvalue) 

type:  specifies knot vector to which knot is inserted 

knotvalue: knot value, which is inserted to knot vector  

Inserts knot into knot vector using Boehm’s algorithm and computes new control vertices, both 

for integral or rational B-spline patch. 

void ComputePatch() 

Computes points on integral or rational B-spline patch using de Boor algorithm. Point on patch 

and isocurves corresponding to highlight parameter are obtained for evaluated parametric value 

closest to highlight parameter.  



64 

 

4. Chapter – User’s  guide 
 

4.1. Installation   

 In order to run this application, you have to use at least Windows XP. You also need both 

Visual C++ Redistributable for Visual Studio 2012 Update 4 package and Microsoft .NET 

Framework 4 Client Profile installed. Both can be downloaded from [12] and [13] or you can find 

them on the included CD. You have to choose correct version for x86 or x64 architecture (32-bit 

and 64-bit). 

File “muparserd32.dll” and/or “muparserd64.dll” have to be in same folder as 

executable file “Splines and surfaces.exe” in order to secure full functionality. 

4.2. Graphic user interface 

 

Figure 4-1 Main window of Splines & Surfaces 

 When you launch Splines & Surfaces application, main window will show up  

(Figure 4-1). Menu strip is located in its top part. Tool strip is just under menu. The largest part  

of window is occupied by 3D window. All graphic objects you create and modify will be displayed 

here. On the right side of 3D window are Auxiliary window and Control box under it. 

Inside menu under File tab, you can choose  

 New create new object 
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 Save save currently modelled object 

 Load load any previously saved object.  

If you choose Save or Load, you will be prompted to choose folder and/or file name.  Last option 

in this submenu is Quit. Under second tab Options you can find Display options and Curve and 

patch options. Display options are described below. 

Curve and patch options include functions: 

 Degree reduction for Bézier curve or patch  

Reduces degree of Bézier curve or patch with preselected method and recomputes current 

object. In case of patch, degree reduction will happen in selected parametric direction.  

If you hover mouse over this option, 3 more options will show up. These define method 

for reducing degree. You can choose one of them method by clicking on it.  

o Method i/n 

o Method 0 : 1 

o Method sum 

 Degree elevation for Bézier curve or patch  

Elevates degree of Bézier curve or patch with preselected method and recomputes current 

object. 

 Reset weights of control points  

Sets weights for all control points to 1.  

 Reset multiplicity of control points  

Sets multiplicity for all control points to 1. 

 Set open knot vector 

Sets knot vector type for selected parametric direction to open. 

 Set uniform knot vector  

Sets knot vector type for selected parametric direction to uniform. 

 Set spline type  

Sets spline type to one of following: 

o Default – no end condition 

o Double endpoints 

o Triple endpoints 

o Relaxed spline 

o Clamped spline 

o Cyclic spline 

o Acyclic spline 

o Quadratic condition 

 

Under Arcs tab you can choose: 

 Parametric curve 

 Bézier arc 

o Integral 

o Rational  

 Hermite arc 

o Cubic 

o Quintic 
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Under Splines tab you can choose: 

 Hermite spline  

 Cardinal spline 

 Bézier spline 

o Integral approximation Bézier spline 

o Rational approximation Bézier spline 

o Integral interpolation Bézier spline 

o Rational interpolation Bézier spline 

 Beta spline 

 B-spline: 

o Integral 

o Rational - NURBS 

Under Surfaces tab you can choose: 

 Parametric surface 

 Affine surface 

o Surface of revolution 

o Extruded surface 

 Coons patch: 

o Linear  

o Bilinear 

o Partially bicubic 

o Bicubic 

 Fergusson patch 

 Adini twist 

 Custom twist 

 Bézier patch: 

o Integral 

o Rational 

 B-spline patch: 

o Integral  

o Rational - NURBS 

Under About you can find information about author and version of software. 

Just below Menu strip you see toolbar.  It contains icons representing functions: 

 New  

 Save 

 Load 

 Reset view 

 Top view 

 Degree elevation for Bézier curve or patch  

 Degree reduction for Bézier curve or patch 

 Set open knot vector 

 Set uniform knot vector 
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 Other buttons include all types of arcs, curves and surfaces. If you hover mouse cursor 

over any of them, tool tip shows up with information about object type. 

On the right side of window, you can see large white square. This is Auxiliary window. 

Here, blending functions are displayed for most objects and also knot vector if it is used. In that 

case you can press right mouse button to show Knot vector options window. We describe it in 

detail later. Control box is located under this white square (described below). 

4.3. Display options 

 

Figure 4-2 Display options 

 Display options window (Figure 4-2) covers all options which can modify how objects 

you create will look. You can change size of points, width of lines, curve and lines for wireframe. 

Next two numeric boxes control how precise will be object enumerated. It defines number  

of points that will form the object. Setting this value too high may result in lag, especially  

for parametric curve and surfaces. Last numeric box enables you to change size of grid in a plane  

𝑧 = 0.  

 You can choose secondary colour for spline. Each odd segments will be coloured  

with this colour, so you can clearly see end points of each segment. Surface colour defines its 

base colour, which can be modified by shading. 

 Application offers you choice between orthographic and perspective projection. You can 

change it at any time. If you want display points as squares and not circles, deselect point 

smoothing option. Line smoothing applies antialiasing to lines and makes them little bit wider.  

 Show / hide section lets you select which objects will be displayed. Vertices and Control 

polygon / net applies for all curves but only for tensor product surfaces. Grid, Axes, Isocurves and 

Point on object are self-explanatory. Illustration points are points, which will show you process 

of curve enumeration. This applies in the case of Bézier arc, Bézier spline, B-spline and rational 

curves of these types. For (rational) Bézier approximation spline, control points for each segment 

and for interpolation spline points required to create 𝐶2 continuous spline are displayed. If you 
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have Hermite spline modelled then it will show you tangents at control points. If you hide control 

polygon, tangents are still displayed as points and lines illustrating algorithms are still visible. 

 In Surface display mode you can choose, how the surface will look. Default option is 

Wireframe, which is formed by lines connecting enumerated points on surface. Faceted surface 

displays whole patch with single colour. Shaded surface and Shaded surface with reflections  

incorporate lights into the scene. Last option Point cluster renders only points on surface. 

4.4. Control box 

 

Figure 4-3 Control box 

Control box (Figure 4-3) offers functionality to modify objects and each sub-section has 

tool tips ready to display. Under Parameter you can choose parameter, for which blending 

functions will be displayed in Auxiliary window. You can change value of highlight parameter  

by setting it inside numeric box or if change u/v is selected, by left clicking inside Auxiliary 

window. If change knots is selected and knots are displayed inside Auxiliary window (blue hollow 

rectangles), you can select one of them by pressing left mouse button, if mouse cursor is close 

enough. Selected knot will then become blue filled rectangle. By next left mouse click inside this 

window, you can define new value for selected knot and it will become hollow rectangle again 

(unselected). 

Numeric box Row or column specifies which row or column of blending functions will 

be displayed. In 𝑢 and 𝑣 parametric direction it shows selected row and column, respectively. 

This option applies only for rational Bézier and B-spline surfaces. 
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Modifiers group include numeric boxes for degree in both parametric directions, 

multiplicity, weight and 𝛽1, 𝑠 and 𝛽2 parameters. Values of multiplicity and weight are used  

in procedure of modifying control point. 

Inside text boxes you can define curves, which will be used to construct surfaces. Text 

boxes labelled u interval, v interval and Rotation interval define intervals for 𝑢, 𝑣 and rotation, 

respectively. Content of these text boxes have to be two numbers separated by “;” and you can 

use “,” as decimal separator. You can define these numbers as value of a function, for example 

sin (5 ∗ 𝜋). Axis text box defines axis of rotation for surface of revolution. Four curves (first  

of them serves also for parametric curve) can be defined via text boxes labelled C0(u)/p(u), C1(u), 

D0(v) and D1(v). These five text boxes therefore need three numbers or expressions, respectively. 

Next three text boxes 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣) and 𝑧(𝑢, 𝑣) are used to define parametric surface. Here only 

one expression per text box is needed. In all text boxes use only the parameter denoted  

in parenthesis for each respective expression. You can use any combination of addition, 

subtraction, multiplication, division of numbers or functions, all of which have predefined 

keyword. They are listed in table of keywords on the page 78.  

If you want to save (and later load) your object created from text boxes’ definition, you 

have to make sure that all expressions do not have spaces in them, but are separated with at least 

one space. For example (good) 

 u+1; u^2-2; sin(u)+1,5 for text boxes C0(u)/p(u), C1(u), D0(v) and D1(v) 

 u*2+1   for text boxes 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣) and 𝑧(𝑢, 𝑣) 

 0,1; 1,3   for intervals text boxes 

as opposed to (wrong) 

 u +1;u^2- 2;sin(u) +1 for text boxes C0(u)/p(u), C1(u), D0(v) and D1(v) 

 u * 3,8 + 1.5  for text boxes 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣) and 𝑧(𝑢, 𝑣) 

 0,0;1,3   for intervals text boxes 

which will not cause an error during evaluating but loading object will fail completely. You can 

use constants 𝜋 and 𝑒, which have keywords pi  and e, respectively . 

Evaluate text boxes button serves to refresh currently modelled object. If you check Affine 

surface from curve checkbox, then affine surface will be constructed from curve, you have 

previously modelled. 

You can choose End condition from list. In the case it is not supported by current spline, 

you will see error message. In the case of Clamped application’s input mode will change  

to awaiting coordinates for tangent vectors. You have to define 2 tangent vectors. Process of 

defining these tangents is totally same as defining points. 
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 Control net group defines parameters for initialisation of control net for tensor product 

surfaces and for bicubic Coons patch. You can change number of points via two numeric boxes 

(only for tensor product surfaces) and scale affects overall size of control net. List box contains 

options: 

 Plane: control points have 𝑧 coordinate 0 

 Elevated: control points are located on an arc 

 Random: control points have random 𝑧 coordinate 

4.5. Controls 

When the application starts, it is awaiting coordinates of points. If you move mouse 

cursor, lines indicating actual cursor coordinates will show up. You can press left mouse button 

to set 𝑥 and 𝑦 coordinates of control point. Now application awaits 𝑧 coordinate. You can either 

press left mouse button, which will set 𝑧 coordinate to cursor position or press right mouse button 

to set 𝑧 coordinate to 0. Application awaits again 𝑥 and 𝑦 coordinates for next control point. You 

can add as many points as you need. If you are finished with defining control points, you press 

right mouse button to cancel mode of defining new control points. In this mode coordinates  

of cursor are not displayed. 

If you want to change position of any control point, you move mouse cursor above it.  

It will become selected if the cursor is close enough and application will let you know  

by highlighting that point with red colour and drawing lines to better illustrate its coordinates. 

Now press left mouse button. Again, define new 𝑥 and 𝑦 coordinates by left clicking. If you press 

right mouse button, 𝑥 and 𝑦 coordinates will not change. After pressing one or the other, you have 

to set 𝑧 coordinate. You can set it to mouse cursor position by pressing left mouse button or to 0 

by pressing right mouse button. It is essentially the same procedure as defining new point. 

If you are not in point defining mode and no control point is selected, you can press left 

mouse button to start rotating 3D window. Moving mouse cursor now rotates viewport. You can 

accept new view by pressing left mouse button or right mouse button. Zooming in and out is done 

via turning the mouse wheel at any time. If you press arrows on keyboard at any time with mouse 

cursor inside 3D window, view port will shift in that direction. 

If you are not in point defining mode, you can press right mouse button to show Context 

menu. (Figure 4-4) 

 

Figure 4-4 Context menu 
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It offers you choices of: 

 Add control vertex at the end 

Enables you to add more control points to end of control points’ sequence. 

 Add control vertices at the beginning 

Enables you to add more control points to beginning of control points’ sequence. 

 Specify vertex 

Show form for specifying vertex. It is described in detail below. 

 Delete control vertex 

If you have selected control point, it will delete it form sequence of control points. 

 Change multiplicity of control vertex 

Sets multiplicity of selected control vertex to value specified in numeric box 

labelled Multiplicity located inside Control box 

 Change weight of control vertex 

Sets weight of selected control vertex to value specified in numeric box labelled 

Weight located inside Control box 

 Show multiplicity of control vertex 

Displays message window with value of multiplicity for selected vertex. 

 Show weight of control vertex 

 Displays message window with value of weight for selected vertex. 

 Cancel 

Closes this context menu. 

Choosing Specify vertex option will open new window. (Figure 4-5) If offers you two or 

only one choice, according to whether you have or have not selected control point (or tangent) 

before. 

 

Figure 4-5 Specify vertex 

 In the first case, you can only add new vertex to the end of control points’ sequence. In 

the second case you can also modify selected vertex. Its actual coordinates are displayed too so 

you can see them at once. Check boxes allows you to change only some attributes of selected 

point. They do not have effect on attributes of new point. 
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4.6. Modelling objects 

Objects are divided to two main groups, splines and surfaces. For splines, except one 

curve type, you have define control polygon by yourself. In the case of surfaces, application first 

creates the object and then you can modify it. 

 For arcs and spline, you simply create sequence of control points and then choose type  

of curve you want. You can modify it by changing position, weight and multiplicity of control 

vertices or tangents (in some cases even vectors of second derivative), modifying knot vector, 

changing end condition or using numeric boxes in control box if current spline is modifiable  

by them. If you select Clamped, application awaits coordinates for two tangent vectors. You 

define them exactly as control points. Changes will occur immediately. 

 One exception is parametric curve. This is defined by text box inside Control box and this 

is the only way to modify its shape (other than changing its enumerating interval). When you 

modify this expression, either choose Parametric curve from menu, click on its icon in toolbar or 

click on Evaluate text boxes button. 

 For surfaces, there are generally two ways to model them. For Bézier, B-spline and 

Bicubic Coons patch, control net is created by application. Scale of this control net is controlled 

by Size numeric box inside Control net in Control box. # of points U and# of points V do not affect 

bicubic Coons patch. You can modify it by changing position or weights, modifying knot vector 

and choosing different types of twist vectors. 

 If you model rational Bézier or B-spline surface, you can select which row or column  

of blending functions you want to see in Auxialiary window. You can select it in numeric box 

Row or column. 

 Other group consists of affine surfaces, Coons patches other than bicubic and parametric 

surface. All of them are defined by multiple text boxes inside Control box. Here you can change 

predefined expressions to modify shape of surface. In order to change take effect, you either 

choose desired type of surface in menu, click on its icon in toolbar or if you have any one of these 

surfaces already created, click on Evaluate text boxes button. 

 Affine surfaces offers you option to create surface of revolution or extruded surface either 

from curve, also called profile curve, defined in text box or the one you have modelled. First, you 

have to create a sequence of control points and select type of curve. Then you have to choose 

either type of affine surface and then select Affine surface from curve option. You can uncheck it 

at any time. To modify curve, which is now used to create affine surface, click on any one type 

of curve. This will bring you to curve modelling mode, where you can modify curve’s shape. 

When you are satisfied, you can again select Affine surface from curve option.  

 If you will change precision with this option active, application will show message saying 

that no curve is defined. All you have to do is to select type of curve you want to be profile curve, 

then select type of affine surface and then finally select Affine surface from curve option. 
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Figure 4-6 Knot vector options 

Application will show you this window once you have B-spline curve or B-spline patch 

modelled and you press right mouse button while mouse cursor is in Auxiliary window.  

(Figure 4-6) In the case of patches, you can choose knot vector for respective parametric direction. 

Two numeric boxes change index and value of knot. If you change their value, labels  

for operations will change itself so you can clearly see which knot with its current value will be 

modified to new value, its multiplicity will be increased or which knot value will be inserted or 

removed from knot vector. Other two operations serves purpose of setting knot vector type  

to open or uniform. If you have clicked on Apply button, move mouse cursor away from it and 

new knot vector will be written down. 
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Conclusion 
 There are many software applications for visualisation of splines and surfaces. We can 

divide them in to two groups – web applets and other simple programs and other one is 

professional CAD tools.  

Web applets are usually designed to visualise only one type of curve or spline and each 

one of them may have different design and controls. This is not the case in Splines & Surfaces. 

 Professional software for CAD on the other hand usually comes with well devised 

controls and design. One downside to this is that they are not often free to use and second that 

these applications are designed for work and not for educational purpose. 

 We have not find any other software that would offer such wide variety types of splines 

and surfaces. For sure there are better applications than Splines & Surfaces, in terms of rendering, 

creating large surfaces composed form large number of patches, mainly professional ones, but we 

think that it is suitable for the job. 

Modification of source code can be also used as template for students. They would not 

have to design and develop entire application, which takes much more time than writing code 

only for example initialisation of B-spline and de Boor’s algorithm. 

 Possible extensions in the future may include new classes of both splines and surfaces, 

for example Bézier triangle patches or DMS splines, visualisation of bi-parametric blending 

functions as surfaces, creating more than one object, for example tensor and triangle Bézier patch 

as well as improved rendering options. Including new class into implementation should not be 

very difficult. 
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Attachments 
Table 1 Use cases 

INPUT SYSTEM STATE RESPONSE 

Left mouse button pressed 
Awaiting 𝑥 and 𝑦 coordinates 

for sequence of control points 

Set 𝑥 and 𝑦 coordinate as 

intersection with plane 𝑧 = 0, 

change state to await 𝑧 

coordinate for sequence 

Left mouse button pressed 
Awaiting 𝑧 coordinate for 

sequence of control points 

Set 𝑧 coordinate as intersection 

with plane 𝑦 = 0, change state 

to await 𝑥 and 𝑦  coordinate 

for sequence 

Right mouse button pressed 
Awaiting 𝑧 coordinate for 

sequence of control points 

Set 𝑧 coordinate to 0, change 

state to await 𝑥 and 𝑦  

coordinate for sequence 

Right mouse button pressed 
Awaiting 𝑥 and 𝑦 coordinates 

for sequence of control points 

Finish constructing sequence 

of control points, change state 

to awaiting input 

Right mouse button pressed Awaiting input Show context menu 

Mouse move  Awaiting input 

Detect if cursor is around any 

control point, if it is, select 

point, if not, deselect point 

Left mouse button pressed  Awaiting input, point selected 
Change state to await 𝑥 and 𝑦  

coordinate for selected point 

Left mouse button pressed  
Awaiting 𝑥 and 𝑦 coordinate 

for selected point 

Set 𝑥 and 𝑦 coordinate as 

intersection with plane 𝑧 = 0, 

change state to await 𝑧 

coordinate for selected point 

Right mouse button pressed 
Awaiting 𝑥 and 𝑦 coordinate 

for selected point 

Do not change 𝑥 and 𝑦 

coordinate, change state to 

await 𝑧 coordinate for selected 

point 
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Left mouse button pressed  
Awaiting 𝑧 coordinate for 

selected point 

Set 𝑧 coordinate as intersection 

with plane 𝑦 = 0, change state 

to await input 

Right mouse button pressed 
Awaiting 𝑧 coordinate for 

selected point 

Set 𝑧 coordinate to 0, change 

state to await input 

Left mouse button pressed  Awaiting input Change state to rotate view 

Mouse move  Rotating view Rotate view 

Left mouse button pressed  Rotating view Stop rotating view 

Mouse wheel scroll Any state Zoom in or out 

Arrow pressed Any state 
Translate view in given 

direction 
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Table 2 Keywords 

KEYWORD # OF ARGUMENTS FUNCTION 

sin 1 sine function 
cos 1 cosine function 
tan 1 tangens function 
asin 1 arcus sine function 
acos 1 arcus cosine function 
atan 1 arcus tangens function 
sinh 1 hyperbolic sine function 
cosh 1 hyperbolic cosine 
tanh 1 hyperbolic tangens function 
asinh 1 hyperbolic arcus sine function 
acosh 1 hyperbolic arcus tangens 

function 
atanh 1 hyperbolic arcur tangens 

function 
log2 1 logarithm to the base 2 
log10 1 logarithm to the base 10 
log 1 logarithm to the base 10 
ln 1 logarithm to base e 

(2.71828...) 
exp 1 e raised to the power of x 
sqrt 1 square root of a value 
sign 1 sign function -1 if x<0; 1 if 

x>0 
rint 1 round to nearest integer 
abs 1 absolute value 
min var. min of all arguments 
max var. max of all arguments 
sum var. sum of all arguments 
avg var. mean value of all arguments 
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List 1 Error messages 

User tries to save current graphic object, but no one is created. 

User tries to use degree elevation or reduction for another object than Bézier arc or patch. 

User tries to use degree reduction, but resulting object would be only a point or a curve for 

Bézier arc and patch, respectively.  

User tries to create affine patch form curve, but not curve is defined. 

Text box for defining interval for 𝑢 parameter contains unrecognisable keyword. 

Interval for 𝑢 parameter consists of less or more than two separate numbers. 

Interval for 𝑢 parameter consists of two numbers with same value. 

Text box for defining interval for 𝑣 parameter contains unrecognisable keyword. 

Interval for 𝑣 parameter consists of less or more than two separate numbers. 

Interval for 𝑣 parameter consists of two numbers with same value. 

Text box for defining rotation’s interval contains unrecognisable keyword. 

Interval for rotation consists of less or more than two separate number. 

Interval for rotation consists of two numbers with same value. 

Text box for defining of rotation’s axis contains unrecognisable keyword. 

Text box for defining of rotation’s axis does not consist of three separate numbers. 

At least one text box for defining curves contains unrecognisable keyword. 

At least one of text boxes for defining boundary curves does not consist of three separate 

expressions.  

Text box for defining 𝑥 coordinate for parametric surface contains unrecognisable keyword. 

Text box for defining 𝑥 coordinate for parametric surface contains more than one expression. 

Text box for defining 𝑦 coordinate for parametric surface contains unrecognisable keyword. 

Text box for defining 𝑦 coordinate for parametric surface contains more than one expression. 

Text box for defining 𝑧 coordinate for parametric surface contains unrecognisable keyword. 

Text box for defining 𝑧 coordinate for parametric surface contains more than one expression. 

Text box for defining parametric curve contains unrecognisable keyword. 

Text box for defining parametric curve contains does not consist of three separate expressions.  

User tries to change knot vector (by changing knot value, increasing knot multiplicity or 

inserting new knot), but operation would result in invalid knot vector. 

User tries to increase multiplicity of knot, but knot with specified value do not exist in knot 

vector. 

User tries to insert knot with value, but knot with that value already has maximum allowed 

multiplicity. 

User tries to insert knot, but is it not a valid value. 

User tries to remove knot with value, but no knot in knot vector has same value. 

User tries to specify new vertex for patch via specify point form. 

User tries to specify new vertex with zero weight via specify point form. 

User tries to modify first or last control point weight to zero via specify point form. 

User tries to specify point for patch via specify point form, but no point is selected. 

User tries to add new control point either at the end or begging via context menu while patch is 

being modelled.  

User tries to delete tangent (for clamped splines). 

User tries to delete control point, but no one is selected. 

User tries to delete control point, tangent or second derivative for Hermite arc. 

User tries to delete control point of patch. 

User tries to set weight of control point via context menu, but no point is selected. 
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User tries to set weight of first or last control point to zero via context menu. 

User tries to set weight of patch control point via context menu, but no control point is selected. 

User tries to set multiplicity of control point via context menu, but no point is selected. 

User tries to set multiplicity of patch control point via context menu. 

User tries to show multiplicity of control point via context menu, but no point is selected. 

User tries to show weight of control point or patch control point via context menu, but no point 

is selected. 

User tries to set spline’s end condition to clamped, but the curve he is working with does not 

support this condition. 

User clicks on “Coons patch – bicubic” without modelling this type of patch before. 

With show illustration points option active, user models Hermite spline with at least one vertex 

with multiplicity greater than 1. 

User tries to display rational blending functions for rational Bézier or B-spline surface, but 

neither one is modelled. 

User tries to save an object but there is no object 

 

List 2 Information messages 

Message asking user, if he wants to proceed with degree reduction of Bézier arc, when it will 

change shape of curve. 

Message asking user, if he wants to proceed with degree reduction of Bézier patch, when it will 

change shape of patch. 

User has defined more control vertices than number needed for cubic or quintic Hermite arc and 

excess vertices will be deleted. 

User selected other end condition than default or clamped for Bézier spline. 

User tries to modify 𝑣 knot vector via knot vector form, but he is working with curves. 

User tries to modify multiplicity of patch control point via specify point form. 

User tries to modify multiplicity of tangents via specify point form. 

User tries to modify weight of tangents via specify point form. 

Message displaying multiplicity of control point. 

Message that says multiplicity of all patch control points is one. 

Message displaying weight of control point. 

Message displaying weight of patch control point. 

Message saying that tangents’ weight equals one. 

Message saying that tangents’ multiplicity equals one. 

User tries to select radio button "𝑣" parameter for secondary window, but he is not modelling 

patch. 

User tries to select radio button “change knots” for secondary window, but he is not working 

with spline or patch that uses knot vector. 

User tries to select Affine surface from curve but he is not working with affine surfaces. 

 


